精英家教网 > 初中数学 > 题目详情
5.如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)
【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】

分析 在AB上取点D,过点D作DE⊥BC于点E,根据tan55°=$\frac{DE}{BE}$,代入计算求出BE即可.

解答 解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,
∵tan55°=$\frac{DE}{BE}$=1.42,
∴BE=$\frac{DE}{tan55°}$=$\frac{3.2}{1.42}$≈2.3(米),
答:至少要离此树的根部B点2.3米才能安全通过.

点评 此题考查了解直角三角形的应用,关键是根据题意画出图形,构造直角三角形,把实际问题转化为数学问题加以计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,
甲组12户家庭用水量统计表
用水量(吨)4569
户数4521
比较5月份两组家庭用水量的中位数,下列说法正确的是(  )
A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有135个点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.
(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;
(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;
(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=$\frac{1}{2}$S△ADE,求此时抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,试判断△AEF是否为“智慧三角形”,并说明理由;
运用:
(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.炎热的夏天离不开电风扇.如图,放在水平地面的立式电风扇的立柱BC高1m,点A与点B始终位于同一水平高度,AB=0.15m,此时风力中心店正对点D,测得CD=2.15,其中摇头机可绕点A上下旋转一定的角度.
(1)当摇头机的俯角∠DAE的度数(精确到0.1°);
(2)当摇头机的俯角∠EAF是(1)中∠DAE的一半时,求风力中心点在地面上向前移动的距离DF(精确到0.1m).
(可使用科学计算器,参考数据:tan26.57°≈0.500,tan24.94°≈0.465,tan13.3°≈0.236,tan12.47°≈0.221,$\sqrt{5}$≈2.236)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)太原双塔寺,为国家级文物保护单位,由于双塔耸立.被人们称为“文笔双塔”,成为太原的标志.小明学习了“利用三角函数测量不可达物体高度”的知识后.利用图1求塔DE的高.具体做法:在地面A、B两处测得塔DE的仰角分别为α、β,且测得AB=a米.设DE=h米,由AE-BE=a可得关于h的方程$\frac{h}{tanα}$-$\frac{h}{tanβ}$=a,解得h=$\frac{a•tanα•tanβ}{tanβ-tanα}$
(2)请你用上述基本模型解决下列问题:如图2,斜坡AE的坡度为1:$\sqrt{3}$,在A处测得塔尖D的仰角为60°,沿着斜坡向上走10米到达B,在B处侧得塔尖D的仰角为75°,求塔DE的高.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若方程x2-12x+5=0的两根分别为a,b,则a2b+ab2的值为60.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是y1=$\frac{4}{x}$.

查看答案和解析>>

同步练习册答案