精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.

(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点 E与点A重合时停止,在这个过程中,请你观察、探究并解答:∠PEF的大小是否发生变化?请说明理由.
分析:(1)由在矩形ABCD中,点P在AD上,AB=2,AP=1,∠BPC=90°,易证得△ABP∽△DPC,然后由相似三角形的对应边成比例,即可求得此时PC的长;
(2)首先过点F作FG⊥AD于点G.易证得△APE∽△GFP,然后由相似三角形的对应边成比例,易求得tan∠PEF=
PF
PE
=2
.即可得∠PEF的大小不发生变化.
解答:解:(1)在矩形ABCD中,∠A=∠D=90°,AP=1,CD=AB=2,
∴PB=
5
,∠ABP+∠APB=90°.
∵∠BPC=90°,
∴∠APB+∠DPC=90°.
∴∠ABP=∠DPC.
∴△ABP∽△DPC.
AP
CD
=
PB
PC

1
2
=
5
PC

∴PC=2
5


(2)∠PEF的大小不变.
理由:过点F作FG⊥AD于点G.
∴四边形ABFG是矩形.
∴∠A=∠AGF=90°.
∴GF=AB=2,∠AEP+∠APE=90°.
∵∠EPF=90°,
∴∠APE+∠GPF=90°.
∴∠AEP=∠GPF.
∴△APE∽△GFP,
PF
PE
=
GF
AP
=
2
1
=2

∴在Rt△EPF中,tan∠PEF=
PF
PE
=2

即tan∠PEF的值不变.
∴∠PEF的大小不变.
点评:此题考查了相似三角形的判定与性质、矩形的性质、勾股定理以及三角函数的性质.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=
AB
.(写出一条线段即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图所示,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,则四边形DFEC的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点E,F分别在边AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州)如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

同步练习册答案