精英家教网 > 初中数学 > 题目详情

【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,OBA分别为90°30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).

【答案】该台灯照亮水平面的宽度BC大约是67.3cm.

【解析】试题分析:根据sin75°=,求出OC的长,根据tan30°=,再求出BC的长,即可求解.

试题解析:在直角三角形ACO中,sin75°=≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==,解得BC≈67.3

答:该台灯照亮水平面的宽度BC大约是67.3cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校团委为积极参与陶行知杯.全国书法大赛现场决赛向学校学生征集书画作品今年3月份举行了书画比赛初赛初赛成绩评定为ABCDE五个等级.该校七年级书法班全体学生参加了学校的比赛并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息解答下列问题

(1)该校七年级书法班共有 名学生扇形统计图中C等级所对应扇形的圆心角等于 并补全条形统计图

(2)A等级的4名学生中有2名男生,2名女生现从中任意选取2名学生参加陶行知杯.全国书法大赛现场决赛请你用列表法或画树状图的方法求出恰好选到1名男生和1名女生的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BCa.作BC边的三等分点C1,使得CC1BC112,过点C1AC的平行线交AB于点A1,过点A1BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2BC212,过点C2AC的平行线交AB于点A2,过点A2BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为(

A. aB. aC. aD. a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °

2)如图①,若DE平分∠ADCBF平分∠ABC的外角,请写出DEBF的位置关系,并证明;

3)如图②,若BEDE分别四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),试求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据.

水笔支数

4

6

8

7

5

需要更换的笔芯个数x

7

8

9

10

11

x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.

1)若x9n7,则y   ;若x7n9,则y   

2)若n9,用含x的的代数式表示y的取值;

3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯时所需的费用,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=3AC=4BC=5P 为边 BC 上一动点,PEAB EPFAC FM EF 中点,则 AM 的最小值为(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,依次连接边长为1的小正方形各边的中点,得到第二个小正方形,再依次连接第二个小正方形各边的中点得到第三个小正方形,按这样的规律第2019个小正方形的面积为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刘同学在一次课外活动中,用硬纸片做了两个直角三角形,在中,;在中,.图①是小刘同学所做的一个数学探究:他将的直角边的斜边重合在一起,并将沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).

(1)在沿方向移动的过程中,小刘发现:两点间的距离逐渐 ;连接后,的度数逐渐 .(填“不变”、“变大”或“变小”);

(2)小刘同学经过进一步地研究,编制了如下问题:

问题①:如图②,当的连线与平行时,求平移距离的长;

问题②:如图③,在的移动过程中,的值是否为定值?如果是,请求出此定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案