精英家教网 > 初中数学 > 题目详情
(2009•宜昌)已知:如图,⊙O的直径AD=2,,∠BAE=90度.
(1)求△CAD的面积;
(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?

【答案】分析:(1)由直径对的圆周角是90°,得∠ACD=∠BAE=90°,由得∠BAC=∠CAD=∠DAE,
所以∠BAC=∠CAD=∠DAE=30°,在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=,即S△ACD=AC×CD=
(2)连BD,作BF⊥AC,垂足为F,求得四边形ABCD的面积和圆的面积的比,根据概率的意义求得P点落在四边形ABCD区域的概率.
解答:解:(1)∵AD为⊙O的直径,
∴∠ACD=∠BAE=90°.

∴∠BAC=∠CAD=∠DAE.
∴∠BAC=∠CAD=∠DAE=30°.
∵在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=
∴S△ACD=AC×CD=

(2)解法1:连BD,
∵∠ABD=90°,∠BAD=60°,
∴∠BDA=∠BCA=30°,
∴BA=BC.
作BF⊥AC,垂足为F,
∴AF=AC=
∴BF=AFtan30°=
∴S△ABC=AC×BF=
∴SABCD=
∵S⊙O=π,
∴P点落在四边形ABCD区域的概率==

(2)解法2:作CM⊥AD,垂足为M.
∵∠BCA=∠CAD(证明过程见解法1),
∴BC∥AD.
∴四边形ABCD为等腰梯形.
∵CM=ACsin30°=
∴SABCD=(BC+AD)CM=
∵S⊙O=π,
∴P点落在四边形ABCD区域的概率==
点评:本题利用了在圆中弧与弦的关系和直角三角形的性质、锐角三角函数的概念及概率的概念求解.用到的知识点为:等弧所对的圆周角相等;概率=相应的面积与总面积之比.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•宜昌)已知:直角梯形OABC的四个顶点是O(0,0),A(,1),B(s,t),C(,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.
(1)求s与t的值,并在直角坐标系中画出直角梯形OABC;
(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:解答题

(2009•宜昌)已知点A(1,-k+2)在双曲线上,求常数k的值.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2009•宜昌)已知:直角梯形OABC的四个顶点是O(0,0),A(,1),B(s,t),C(,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.
(1)求s与t的值,并在直角坐标系中画出直角梯形OABC;
(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2009•宜昌)已知点A(1,-k+2)在双曲线上,求常数k的值.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2009•宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

查看答案和解析>>

同步练习册答案