【题目】如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正确的有( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,
∴P在∠A的平分线上,故①正确;
由①可知,PB=PC,∠B=∠C,PS=PR,
∴△BPR≌△CPS,
∴AS=AR,故②正确;
∵AQ=PQ,
∴∠PQC=2∠PAC=60°=∠BAC,
∴PQ∥AR,故③正确;
由③得,△PQC是等边三角形,
∴△PQS≌△PCS,
又由②可知,④△BRP≌△QSP,故④也正确,
∵①②③④都正确,
故选D.
【考点精析】根据题目的已知条件,利用角平分线的性质定理和等边三角形的性质的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;等边三角形的三个角都相等并且每个角都是60°.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中, ,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:① ∠AED=∠CED;② OE=OD;③ BH=HF;④ BC-CF=2HE;⑤ AB=HF,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD同时停止旋转.
(1)当OC旋转10秒时,∠COD= °.
(2)当旋转时间为 秒时,OC与OD的夹角是30°.
(3)当旋转时间为 秒时,OB平分∠COD时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种记分的方法:80分以上如88分记为+8分,某个学生在记分表上记为﹣6分,则这个学生的分数应该是( )分.
A.74
B.﹣74
C.86
D.﹣86
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两点在数轴上的位置如图所示,其中点A对应的有理数为-4,且AB=10。动点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒(t>0)。
(1)当t=1时,AP的长为_________,点P表示的有理数为______;
(2)当PB=2时,求t的值;
(3)M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是__________,依次继续下去……第2 016次输出的结果是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com