精英家教网 > 初中数学 > 题目详情

在△ABC中,D为AC的中点,将△ABD绕点D顺时针旋转α°(0<α<360)得到△DEF,连接BE、CF.
(1)如图,若△ABC为等边三角形,BE与CF有何数量关系?证明你的结论﹔
(2)若△ABC为等边三角形,当α的值为多少时,ED∥AB?
(3)若△ABC不是等边三角形时,(1)中结论是否仍然成立?若不成立,请添加一个条件,使得结论成立.(不必证明,不再添加其它的字母和线段)

解:(1)BE=CF,理由为:
证明:∵BD为等边△ABC的中线,
∴BD⊥AC,即∠BDA=∠BDC=90°,
∵∠EDA=∠FDB,
∴∠EDA+∠BDA=∠FDB+∠BDC,即∠EDB=∠CDF,
由旋转的性质得到DE=DA=DC,BD=FD,
∵在△EDB和△CDF中,

∴△EDB≌△CDF(SAS),
∴BE=CF;

(2)α=60°或240°,
当α=60°时,由△ABC为等边三角形,得到∠A=60°,
∴∠A=∠EDA=60°,
∴ED∥AB;
当α=240°时,∠A=∠EDC=60°,
∴ED∥AB;

(3)不成立,添加的条件为AB=BC,
理由为:∵AB=BC,BD为中线,
∴BD⊥AC,即∠BDC=∠BDA=90°,DA=DC,
∵∠EDA=∠FDB,
∴∠EDA+∠BDA=∠FDB+∠BDC,即∠EDB=∠CDF,
由旋转的性质得到BD=FD,DA=DC=DE,
∵在△EDB和△CDF中,

∴△EDB≌△CDF(SAS),
∴BE=CF.
分析:(1)BE=CF,理由为:由BD为等边三角形ABC的中线,利用三线合一得到BD垂直于AC,得到一对直角相等,利用等式的性质得到一对角相等,再由旋转的性质及D为中点得到DE=DC,BD=FD,利用SAS得出三角形EBD与三角形CDF全等,利用全等三角形的对应边相等即可得证;
(2)由三角形ABC为等边三角形,利用等边三角形的性质得到∠A=60°,利用平行线的判定即可得出旋转角α的度数;
(3)若△ABC不是等边三角形时,(1)中结论不成立,需添加的条件为AB=BC,证明方法同(1).
点评:此题考查了等边三角形的性质,旋转的性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在△ABC中,AD为BC边上的高,∠B=45°,∠C=30°,AD=2.求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交精英家教网AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.
(1)求证:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧法”.方法是:
①画线段AB,分别以A,B为圆心,AB长为半径画弧相交于C;
②以C为圆心,仍以AB长为半径画弧交AC的延长线于D;
③连接DB.则∠ABD就是直角.
(1)请你就∠ABD是直角作出合理解释;
(2)现有一长方形木块的残留部分如图,其中AB,CD整齐且平行,BC,AD是参差不齐的毛边.请你在毛边附近用尺规画一条与AB,CD都垂直的边(不写作法,保留作图痕迹);
精英家教网
B.如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
(1)写出图中所有相等的线段,并选择其中一对给予证明;
(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是76cm2,AB=20cm,AC=18cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C为直角,AC=9,AB=15,则∠A的平分线AD≈
 

查看答案和解析>>

同步练习册答案