精英家教网 > 初中数学 > 题目详情
17.已知等腰△ABC的顶角∠A=36°(如图).
(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);
(2)证明:△ABC∽△BDC.

分析 (1)利用角平分线的作法作出线段BD即可;
(2)先根据等腰三角形的性质得出∠ABC=∠C=72°,再由角平分线的性质得出∠ABD的度数,故可得出∠A=∠CBD=36°,∠C=∠C,据此可得出结论.

解答 解:(1)如图,线段BD为所求出;

(2)∵∠A=36°,AB=AC,
∴∠ABC=∠C=$\frac{1}{2}$(180°-36°)=72°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=72°÷2=36°.
∵∠A=∠CBD=36°,∠C=∠C,
∴△ABD∽△BDC.

点评 本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在横线上填上适当内容,在括号内填写理由:
已知:如图,∠BAE+∠AED=180°,∠1=∠2,求证:∠M=∠N.
证明∵∠BAE+∠AED=180°(已知)
∴AB∥CD(同旁内角互补、两直线平行)
∴∠BAE=∠AEC
又∵∠1=∠2(已知)
∴∠BAE-∠1=∠AEC-∠2 (等式的性质)
即∠MAE=∠AEN
∴AM∥EN
∴∠M=∠N (两直线平行,内错角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.当a=$\sqrt{2}$时,计算分式$\frac{a+3}{a}$•$\frac{6}{{a}^{2}+6a+9}$+$\frac{2a-6}{{a}^{2}-9}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,反比例函数y=$\frac{k}{x}$(k≠0)与一次函数y=ax+4(a≠0)的图象只有一个公共点A(2,2),直线y=mx(m≠0)也过点A.
(1)求k、a及m的值;
(2)结合图象,写出mx<ax+4<$\frac{k}{x}$时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AB是⊙O的直径,C点在⊙O上,连接AC,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,sin∠BAC=$\frac{4}{5}$,连接CD,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知一组数据x1,x2,x3,x4,x5的方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则$\frac{CC'}{{{B}{B}'}}$=$\frac{\sqrt{74}}{5}$(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线y=2x+4与反比例函数y=$\frac{k}{x}$的图象相交于A(-3,a)和B两点
(1)求k的值;
(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;
(3)直接写出不等式$\frac{6}{x-5}$>x的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )
A.5πcm2B.10πcm2C.15πcm2D.20πcm2

查看答案和解析>>

同步练习册答案