分析 当m从$\frac{1}{3}$变化到$\frac{2}{3}$时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=$\frac{1}{3}$时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的$\frac{1}{3}$,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON中运用三角函数可求出ON的长;当m=$\frac{2}{3}$时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的$\frac{2}{3}$,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.
解答 解:①当m=$\frac{1}{3}$时,连接PM,如图1,
∠APM=$\frac{1}{3}$×360°=120°.
∵PA=PM,∴∠PAM=∠PMA=30°.
在Rt△AON中,NO=AO•tan∠OAN=1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$.
②当m=$\frac{2}{3}$时,连接PM,如图2,
∠APM=360°-$\frac{2}{3}$×360°=120°,
同理可得:NO=$\frac{\sqrt{3}}{3}$.
综合①、②可得:点N相应移动的路经长为$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{3}}{3}$=$\frac{2}{3}\sqrt{3}$.
故答案为$\frac{2}{3}$$\sqrt{3}$.
点评 本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.
科目:初中数学 来源: 题型:选择题
A. | x+x2=x3 | B. | 2x3÷x2=x | C. | ($\frac{x}{2}$)3=$\frac{{x}^{3}}{8}$ | D. | (a+4)(a+3)=a2+12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ac+1=b | B. | ab+1=c | C. | bc+1=a | D. | 以上都不是 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | $\frac{4\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com