精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD中,EF分别是ABAD边上的点,DECF交于点G

(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证

(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;

3)如图③,若BA=BC=4DA=DC=6,∠BAD90°DECF,请直接写出的值.

【答案】(1)(2)见解析;(3)

【解析】分析:(1)根据矩形性质得出∠A=FDC=90°,求出∠CFD=AED,证出AED∽△DFC即可;

(2)当∠B+EGC=180°时,成立,证DFG∽△DEA,得出,证CGD∽△CDF,得出,即可得出答案;

(3)过CCNADN,CMABAB延长线于M,连接BD,设CN=x,BAD≌△BCD,推出∠BCD=A=90°,证BCM∽△DCN,求出CM=,在RtCMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x-4)2+(2=42,求出CN=,证出AED∽△NFC,即可得出答案.

(1)证明:∵四边形ABCD是矩形,∴∠A=ADC=90°.

∴∠ADE+CDE=90°.

DECF,∴∠DCF+CDE=90°.

∴∠ADE=DCF.

∴△ADE∽△DCF,

(2)当∠B+EGC=180°时,成立.

证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=CFM.

ABCD,ADBC,∴∠A=CDM. ,CFM=FCB.

∵∠B+EGC=180°,∴∠FCB+BEG=180°.

∵∠AED+BEG=180°,∴∠AED=FCB.

∴∠CMF=AED.

∴△ADE∽△DCM.

.即

(3)

CCNADN,CMABAB延长线于M,连接BD,设CN=x,

∵∠BAD=90°,即ABAD,

∴∠A=M=CNA=90°,

∴四边形AMCN是矩形,

AM=CN,AN=CM,

∵在BADBCD中,

∴△BAD≌△BCD(SSS),

∴∠BCD=A=90°,

∴∠ABC+ADC=180°,

∵∠ABC+CBM=180°,

∴∠MBC=ADC,

∵∠CND=M=90°,

∴△BCM∽△DCN,

CM=

RtCMB中,CM=,BM=AM-AB=x-4,由勾股定理得:BM2+CM2=BC2

(x-4)2+(2=42

x=0(舍去),x=

CN=

∵∠A=FGD=90°,

∴∠AED+AFG=180°,

∵∠AFG+NFC=180°,

∴∠AED=CFN,

∵∠A=CNF=90°,

∴△AED∽△NFC,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店在今年2月底以每袋23元的成本价收购一批农产品准备向外销售,当此农产品售价为每袋36元时,3月份销售125袋,45月份该农产品十分畅销,销售量持续走高.在售价不变的基础上,5月份的销售量达到180.45这两个月销售量的月平均增长率不变.

1)求45这两个月销售量的月平均增长率;

26月份起,该商店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1/袋,销量就增加4袋,当农产品每袋降价多少元时,该商店6月份获利1920元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AD上一点,BCD的中点,AD=8cm,BD=1cm

(1)AC的长

(2)若点E在直线AD,EA=2cm,BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,PAB的平分线与CBA的平分线相交于E,CE的连线交AP于D.

求证:AD+BC=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1△AOB中,∠AOB90°OAOBA(32)AB x轴于 C

(1) △AOB的面积

(2) 如图2,点 D(0) y轴上,连 BD,求证:BD⊥AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠BAC=90°AB=AC.MN是过点A的直线,BDMN DCEMNE.

1)求证:BD=AE.

2)若将MN绕点A旋转,使MNBC相交于点G(如图2),其他条件不变,求证:BD=AE.

3)在(2)的情况下,若CE的延长线过AB的中点F(如图3),连接GF,求证:∠AFE=BFG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的对角线相交于点平分于点,若,则线段的长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知图1为一个正方体,其棱长为12,图2为图1的表面展开图(数字和字母写在外面),请根据要求回答问题:

1)若正方体相对面上的数互为相反数,则_________

2)用一个平面去截这个正方体,下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是( );

A.①② B.①④ C.①②④ D.①②③④

3)图1中,为所在棱的中点,请在图2标出点的位置,并求出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AOCBOC互余OD平分BOCEOC2∠AOE

1)若AOD75°AOE的度数

2)若DOE54°EOC的度数

查看答案和解析>>

同步练习册答案