精英家教网 > 初中数学 > 题目详情
13.如图,AO⊥OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为2.

分析 作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.

解答 解:如图,过点E作EN⊥BM,垂足为点N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE,
∵△ABE、△BFO均为等腰直角三角形,
∴AB=BE,BF=BO;
在△ABO与△BEN中,
$\left\{\begin{array}{l}{∠BAO=∠NBE}\\{∠AOB=∠BNE}\\{AB=BE}\end{array}\right.$
∴△ABO≌△BEN(AAS),
∴BO=NE,BN=AO;
∵BO=BF,
∴BF=NE,
在△BPF与△NPE中,
$\left\{\begin{array}{l}{∠FBP=∠ENP}\\{∠FPB=∠EPN}\\{BF=NE}\end{array}\right.$,
∴△BPF≌△NPE(AAS),
∴BP=NP=$\frac{1}{2}$BN;而BN=AO,
∴BP=$\frac{1}{2}$AO=$\frac{1}{2}$×4=2,
故答案为:2.

点评 本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图所示,在△ABC中,∠B=90°,将△ABC折叠,使点C与点A重合,折痕为DE,若△ABE的周长为7,AB比BC小1,则AB的长为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.
(1)若∠1=60°,求∠3的度数;
(2)判断△BEF的形状,并说明理由.
(3)若AB=6,AD=12,试求△BC′F的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是$\frac{1}{2}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知一次函数y=k x+b经过点(-3,-4)和(0,2).
(1)求k、b的值;
(2)设一次函数图象与x轴、y轴分别交于点A、B,求A、B的坐标.
(3)若P是该函数上的一点,且P的横坐标为-$\frac{1}{2}$,求PO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知实数a,b,c满足$\frac{{a}^{2}-{b}^{2}-{c}^{2}}{2bc}$+$\frac{{b}^{2}-{c}^{2}-{a}^{2}}{2ca}$+$\frac{{c}^{2}-{a}^{2}-{b}^{2}}{2ab}$=-1,求($\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$)2012+($\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2ca}$)2012+($\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$)2012的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)
(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是-π
(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+4,-6,+3
①第3次滚动后,A点距离原点最远
②当圆片结束运动时,此时点A所表示的数是4π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)如图1,作△ABC关于原点对称的图形;
(2)在图2中画出y=(x-1)2-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若关于x的方程$\frac{1}{2}$x+a=2x-5与4x+1=9的解相同,则a=-2.

查看答案和解析>>

同步练习册答案