13£®Ï߶ÎEA£¬AC£¬CB£¬BF×é³ÉÕÛÏßͼÐΣ¬Èô¡ÏC=¦Á£¬¡ÏEAC+¡ÏFBC=¦Â
£¨1£©Èçͼ¢Ù£¬AMÊÇ¡ÏEACµÄƽ·ÖÏߣ¬BNÊÇ¡ÏFBCµÄƽ·ÖÏߣ¬ÈôAM¡ÎBN£¬Ôò¦ÁÓë¦ÂÓкιØϵ£¿²¢ËµÃ÷ÀíÓÉ£®
£¨2£©Èçͼ¢Ú£¬Èô¡ÏEACµÄƽ·ÖÏßËùÔÚÖ±ÏßÓë¡ÏFBCƽ·ÖÏßËùÔÚÖ±Ïß½»ÓÚP£¬ÊÔ̽¾¿¡ÏAPBÓë¦Á¡¢¦ÂµÄ¹ØϵÊǦÁ=¡ÏAPB+$\frac{1}{2}$¦Â»ò¦Á+¡ÏAPB=$\frac{1}{2}$¦Â£®
£¨3£©Èçͼ¢Û£¬Èô¦Á¡Ý¦Â£¬¡ÏEACÓë¡ÏFBCµÄƽ·ÖÏßÏཻÓÚP1£¬¡ÏEAP1Óë¡ÏFBP1µÄƽ·ÖÏß½»ÓÚP2£»ÒÀ´ËÀàÍÆ£¬Ôò¡ÏP5=¦Á-$\frac{31}{32}$¦Â£®£¨ÓæÁ¡¢¦Â±íʾ£©

·ÖÎö £¨1£©¸ù¾Ý½Çƽ·ÖÏߵĶ¨Òå±íʾ³ö¡ÏMAC+¡ÏNCB£¬ÔÙ¸ù¾ÝÁ½Ö±ÏßƽÐУ¬ÄÚ´í½ÇÏàµÈ¿ÉµÃ¡ÏC=¡ÏMAC+¡ÏNCB£»
£¨2£©¸ù¾Ý½Çƽ·ÖÏߵĶ¨Òå±íʾ³ö¡ÏPAC+¡ÏPBC£¬ÔÙ·ÖµãPÔÚµãCµÄÏ·½ºÍÉÏ·½Á½ÖÖÇé¿ö£¬ÀûÓÃÈý½ÇÐεÄÒ»¸öÍâ½ÇµÈÓÚÓëËü²»ÏàÁÚµÄÁ½¸öÄڽǵĺÍÁÐʽÕûÀí¼´¿ÉµÃ½â£»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛ·Ö±ð±íʾ³ö¡ÏP1¡¢¡ÏP2¡­£¬´Ó¶øµÃ½â£®

½â´ð ½â£º£¨1£©¡ßAMÊÇ¡ÏEACµÄƽ·ÖÏߣ¬BNÊÇ¡ÏFBCµÄƽ·ÖÏߣ¬
¡à¡ÏMAC+¡ÏNCB=$\frac{1}{2}$¡ÏEAC+$\frac{1}{2}$¡ÏFBC=$\frac{1}{2}$¦Â£¬
¡ßAM¡ÎBN£¬
¡à¡ÏC=¡ÏMAC+¡ÏNCB£¬
¼´¦Á=$\frac{1}{2}$¦Â£»

£¨2£©¡ß¡ÏEACµÄƽ·ÖÏßÓë¡ÏFBCƽ·ÖÏßÏཻÓÚP£¬
¡à¡ÏPAC+¡ÏPBC=$\frac{1}{2}$¡ÏEAC+$\frac{1}{2}$¡ÏFBC=$\frac{1}{2}$¦Â£¬
ÈôµãPÔÚµãCµÄÏ·½£¬Ôò¡ÏC=¡ÏAPB+£¨¡ÏPAC+¡ÏPBC£©£¬
¼´¦Á=¡ÏAPB+$\frac{1}{2}$¦Â£¬
ÈôµãPÔÚµãCµÄÉÏ·½£¬Ôò¡ÏC+¡ÏAPB=¡ÏPAC+¡ÏPBC£¬
¼´¦Á+¡ÏAPB=$\frac{1}{2}$¦Â£»
×ÛÉÏËùÊö£¬¦Á=¡ÏAPB+$\frac{1}{2}$¦Â»ò¦Á+¡ÏAPB=$\frac{1}{2}$¦Â£»

£¨3£©ÓÉ£¨2£©µÃ£¬¡ÏP1=¡ÏC-£¨¡ÏPAC+¡ÏPBC£©=¦Á-$\frac{1}{2}$¦Â£¬
¡ÏP2=¡ÏP1-£¨¡ÏP2AP1+¡ÏP2BP1£©£¬
=¦Á-$\frac{1}{2}$¦Â-$\frac{1}{4}$¦Â=¦Á-$\frac{3}{4}$¦Â£¬
¡ÏP3=¦Á-$\frac{3}{4}$¦Â-$\frac{1}{8}$¦Â=¦Á-$\frac{7}{8}$¦Â£¬
¡ÏP4=¦Á-$\frac{7}{8}$¦Â-$\frac{1}{16}$¦Â=¦Á-$\frac{15}{16}$¦Â£¬
¡ÏP5=¦Á-$\frac{15}{16}$¦Â-$\frac{1}{32}$¦Â=¦Á-$\frac{31}{32}$¦Â£®
¹Ê´ð°¸Îª£º£¨2£©¦Á=¡ÏAPB+$\frac{1}{2}$¦Â»ò¦Á+¡ÏAPB=$\frac{1}{2}$¦Â£»£¨3£©¦Á-$\frac{31}{32}$¦Â£®

µãÆÀ ±¾Ì⿼²éÁËƽÐÐÏßµÄÐÔÖÊ£¬½Çƽ·ÖÏߵĶ¨Ò壬Èý½ÇÐεÄÒ»¸öÍâ½ÇµÈÓÚÓëËü²»ÏàÁÚµÄÁ½¸öÄڽǵĺ͵ÄÐÔÖÊ£¬ÕûÌå˼ÏëµÄÀûÓÃÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ1£¬ÔÚ¾ØÐÎABCDÖУ¬AB=8£¬BC=6£¬µãOΪ¶Ô½ÇÏßBDµÄÖе㣬µãP´ÓµãA³ö·¢£¬ÑØÕÛÏßAD-DOÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòÖÕµãOÔ˶¯£¬µ±µãPÓëµãA²»ÖغÏʱ£¬¹ýµãP×÷PQ¡ÍABÓÚµãQ£¬ÒÔPQΪ±ßÏòÓÒ×÷Õý·½ÐÎPQMN£¬ÉèÕý·½ÐÎPQMNÓë¡÷ABDÖصþ²¿·ÖͼÐεÄÃæ»ýΪS£¨Æ½·½µ¥Î»£©£¬µãPÔ˶¯µÄʱ¼äΪt£¨Ã룩£®
£¨1£©Èçͼ2£¬µ±µãNÂäÔÚBDÉÏʱ£¬ÇótµÄÖµ£»
£¨2£©µ±Õý·½ÐÎPQMNµÄ±ß¾­¹ýµãOʱ£¨°üÀ¨Õý·½ÐÎPQMNµÄ¶¥µã£©£¬Çó´ËʱtµÄÖµ£»
£¨3£©µ±µãPÔÚ±ßADÉÏÔ˶¯Ê±£¬ÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨4£©Ð´³öÔÚµãPÔ˶¯¹ý³ÌÖУ¬Ö±ÏßDNÇ¡ºÃƽ·Ö¡÷BCDÃæ»ýʱtµÄËùÓпÉÄÜÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÒ»´ÎÊýѧ¿ÎÉÏ£¬ÍõÀÏʦÔÚºÚ°åÉÏ»­³öͼ£¬²¢Ð´ÏÂÁËËĸöµÈʽ£º¢ÙAB=DC£¬¢ÚBE=CE£¬¢Û¡ÏB=¡ÏC£¬¢Ü¡ÏBAE=¡ÏCDE£®ÒªÇóͬѧ´ÓÕâËĸöµÈʽÖÐÑ¡³öÁ½¸ö×÷ΪÌõ¼þ£¬ÍƳö¡ÏCAD=¡ÏBDA£®ÇëÄãÊÔ×ÅÍê³ÉÍõÀÏʦÌá³öµÄÒªÇ󣬲¢ËµÃ÷ÀíÓÉ£®£¨Ð´³öÒ»ÖÖ¼´¿É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ö±½ÇÈý½ÇÐÎABCÖУ¬¡ÏB=90¡ã£¬AB=5£¬BC=12£¬µãPΪACÏ߶ÎÉϵĶ¯µã£¬µ±µãPÔ˶¯Ê±£¬ÉèPC=x£¬¡÷ABPµÄÃæ»ýΪy£¬Ôòy¹ØÓÚxµÄ±í´ïʽΪy=-$\frac{30}{13}$x+30£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èô¹ØÓÚx¡¢yµÄ·½³Ì×é$\left\{\begin{array}{l}{x+y=30-k}\\{3x+y=50+k}\end{array}\right.$µÄ½â¶¼ÊǷǸºÊý£®
£¨1£©ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©ÈôM=3x+4y£¬ÇóMµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{x-y=-2k}\\{x+3y=3k-1}\end{array}\right.$µÄ½âÂú×ãx£¾y£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬¡÷ABDÓë¡÷ACE¾ùΪµÈÑüÖ±½ÇÈý½ÇÐÎÇÒ°Ú³ÉÈçͼËùʾµÄÑù×Ó£¬Èô¡ÏABC=90¡ã£¨Í¼ÖÐËùÓеĵ㡢Ï߶¼ÔÚͬһƽÃæÄÚ£©£¬DF=$\sqrt{2}$£¬EF=2$\sqrt{2}$£¬ÔòÏ߶ÎBCµÄ³¤Îª$\sqrt{7}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Îª¹ÄÀø¾ÓÃñ½ÚÔ¼Óõ磬ijÊÐ×Ô2016ÄêÒÔÀ´¶Ô¼ÒÍ¥ÓõçÊÕ·ÑʵÐн×Ìݵç¼Û£¬¼´Ã¿Ô¶Ôÿ»§¾ÓÃñµÄÓõçÁ¿·ÖΪÈý¸öµµ¼¶ÊÕ·Ñ£¬µÚÒ»µµÎªÓõçÁ¿ÔÚ180ǧÍßʱ£¨º¬180ǧÍßʱ£©ÒÔÄڵIJ¿·Ö£¬Ö´Ðлù±¾¼Û¸ñ£»µÚ¶þµµÎªÓõçÁ¿ÔÚ180ǧÍßʱµ½450ǧÍßʱ£¨º¬450ǧÍßʱ£©µÄ²¿·Ö£¬ÊµÐÐÌá¸ßµç¼Û£»µÚÈýµµÎªÓõçÁ¿³¬³ö450ǧÍßʱµÄ²¿·Ö£¬Ö´ÐÐÊг¡µ÷½Ú¼Û¸ñ£®ÎÒÊÐһλͬѧ¼Ò2015Äê2Ô·ÝÓõç330ǧÍßʱ£¬µç·ÑΪ213Ôª£¬3Ô·ÝÓõç240ǧÍßʱ£¬µç·ÑΪ150Ôª£®ÒÑÖªÎÒÊеÄһλ¾ÓÃñ½ñÄê4¡¢5Ô·ݵļÒÍ¥ÓõçÁ¿·Ö±ðΪ160ºÍ410ǧÍßʱ£¬ÇëÄãÒÀ¾Ý¸Ãͬѧ¼ÒµÄÊÕ·ÑÇé¿ö£¬¼ÆËãÕâλ¾ÓÃñ4¡¢5Ô·ݵĵç·Ñ·Ö±ðΪ¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¸ù¾Ý²»µÈʽµÄÐÔÖÊ£¬°ÑÏÂÁв»µÈʽ»¯Îªx£¾a»òx£¼aµÄÐÎʽ£¬
£¨1£©-2x£¼-1£»
£¨2£©2x£¼-1£»
£¨3£©-2x£¼4x+4£»
£¨4£©$\frac{1}{2}x¡Ý\frac{1}{3}£¨x-2£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸