精英家教网 > 初中数学 > 题目详情
15.甲、乙两车从A地出发沿同一路线驶向B地,甲车匀速驶向B地,甲车出发30分钟后,乙车才出发,乙先匀速行驶一段时间后,到达货站装货后继续行驶,速度减少了56千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法中正确的是(  )
A.甲车从A地到B地行驶了6小时
B.甲的速度是120千米/时
C.乙出发90分钟追上甲
D.当两车在行驶过程中,相距40千米时,x=2或3.5

分析 利用图中信息,先求出两人的速度,再寻找等量关系,列出方程,一一判断即可.

解答 解:A、错误.甲车从A地到B地行驶了6.5小时.
B、错误.甲的速度为$\frac{520}{6.5}$=80千米/时.
C、错误.设乙开始的速度为x千米/时,由题意3x+2.5(x-56)=520,解得x=120,
设乙出发t小时追上甲,则(120-80)t=0.5×80,t=1,
所以乙出发t小时追上甲.
D、正确.由题意甲的函数解析式为y=80x+40,
乙开始的函数解析式为y=120x,装货后的解析式为y=64x+136,
由题意120x-(80x+40)=40或64x+136-(80x+40)=40,
解得x=2或3.5.
故选D.

点评 本题考查一次函数的应用、行程问题的应用等知识,解题的关键是读懂图象信息,学会寻找等量关系列出方程解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),则顶点B1的坐标为(-2,3);
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,则顶点A2的坐标为(3,-5);
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,在网格中画出△A3B3C3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.把下列各数填入相应的集合内:
-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$,-$\frac{\sqrt{2}}{2}$.
①有理数集合:{-7,0.32,$\frac{1}{3}$,46,0,$\root{3}{216}$ }  
②无理数集合:{$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,-$\frac{\sqrt{2}}{2}$}
③正实数集合:{0.32,$\frac{1}{3}$,46,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$}
④实数集合:{-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$,-$\frac{\sqrt{2}}{2}$}.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线y=ax2-4a(a>0)与x轴相交于A,B两点,点P是抛物线上一点,且PB=AB,∠PBA=120°.
(1)求该抛物线的表达式;
(2)设点M(m,n)为抛物线上的一个动点,当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:20170-(-$\frac{1}{3}$)-1
(2)如图,在Rt△ACB中,∠ACB=90°,AB=c,BC=a,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,若此时满足AB′=B′D,求证:c=2a.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.
(1)矩形ABCD的边BC的长为4;
(2)将矩形沿直线AP折叠,点B落在点B′.
①点B′到直线AE的最大距离是8;
②当点P与点C重合时,如图所示,AB′交DC于点M.
求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;
③当EB′∥BD时,直接写出EB′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.用正四边形和正三角形可以做平面镶嵌,下面就是用正四边形和正三角形镶嵌出的一组图案,按此规律,第n个图案中正三角形的个数为3n(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某校为美化校园,计划对面积为1800平方米的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400平方米区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?
(2)若学校每天付给乙队的绿化费用是0.25万元,每天付给甲队的绿化费用比乙队多60%,要使这次学校付给甲、乙两队的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

同步练习册答案