【题目】请阅读下列材料,并完成相应的任务.
人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.
我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.
弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.
下面是弦切角定理的部分证明过程:
证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB=90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.
如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CAD.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.
【答案】(1)详见解析;(2)详见解析
【解析】
(1)利用圆周角定理得到∠DEA=90°,再根据同弧所对的圆周角相等得到∠CED=∠CAD,最后利用等式的性质即可得到∠CEA=∠CAB;
(2)通过∠C=90°说明∠CFA+∠FAC=90°,再根据同角的余角相等得到∠CAB=∠CFA即可.
解:(1)∵AD是⊙O直径,
∴∠DEA=90°.
∵AB与⊙O相切于点A,
∴∠DAB=90°.
∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB.
∴弦切角的度数等于它所夹弧所对的圆周角度数;
(2)证明:如图,过点A作直径AF交⊙O于点F,连接FC.
∵AF是直径,
∴∠ACF=90°.
∴∠CFA+∠FAC=90°.
∵AB与⊙O相切于点A,
∴∠FAB=90°.
∴∠CAB+∠FAC=90°.
∴∠CAB=∠CFA,
即弦切角的度数等于它所夹弧所对的圆周角度数.
科目:初中数学 来源: 题型:
【题目】已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,
对于上述的两个判断,下列说法正确的是( )
A. ①正确,②错误 B. ①错误,②正确 C. ①,②都错误 D. ①,②都正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;
(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一种雪球夹的简化结构图,其通过一个固定夹体和一个活动夹体的配合巧妙地完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.当雪球夹闭合时,测得∠AOB=30°,OA=OB=14 cm,则此款雪球夹制作的雪球的直径AB的长度为________ cm.(结果保留一位小数.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点坐标为,,,绕原点逆时针旋转,得到,向右平移6个单位,再向上平移2个单位得到.
(1)画出和;
(2)是的边上一点,经旋转、平移后点的对应点分别为、,请写出点、的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为( )
A. 40B. 44C. 84D. 88
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于点和点B,与y轴交于点.
求该二次函数的表达式;
过点A的直线且交抛物线于另一点D,求直线AD的函数表达式;
在的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点为上一点,点为上一点,且.
(1)如图1,若,求证:;
(2)如图2,若,求证:;
(3) 如图3,在(2)的条件下,若,且,,直接写出线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com