【题目】一个图形和它经过平移所得的图形中,两组对应点所连的线段的关系是( )
A.平行B.相等
C.平行(或在同一条直线上)且相等D.既不平行,又不相等
科目:初中数学 来源: 题型:
【题目】如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在AD、AF上,此时BD=CF,BD⊥CF成立.
(1)如图②,
i)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,线段BD与线段CF的数量关系是;直线BD与直线CF的位置关系是 .
ii)请利用图②证明上述结论.
(2)如图③,当△ABC绕点A逆时针旋转45°时,延长DB交CF于点H,若AB= ,AD=3时,求线段FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG= ,求EB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程,并解答后面的问题:
如图1,在平面直角坐标系xOy中,A(x1 , y1),B(x2 , y2),C为线段AB的中点,求C点的坐标.
解:分布过A、C做x轴的平行线,过B、C做y轴的平行线,两组平行线的交点如图1所示.
设C(x0 , y0),则D(x0 , y1),E(x2 , y1),F(x2 , y0)
由图1可知:x0= =
y0= =
∴( , )
问题:
(1)已知A(﹣1,4),B(3,﹣2),则线段AB的中点坐标为
(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,﹣4),(0,2),(5,6),求点D的坐标.
(3)如图2,B(6,4)在函数y= x+1的图象上,A(5,2),C在x轴上,D在函数y= x+1的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB=1,则EF的长是( )
A.1.5
B.
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com