如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3).
(1)求二次函数的表达式;
(2)如果一次函数y=4x+m的图象与二次函数的图象有且只有一个公共点,求m的值和该公共点的坐标;
(3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.
(1)y=x2-2x-3;(2)-12,(3,0);(3)-3或-4.
解析试题分析:(1)把(-1,0)和点(0,-3)代入函数表达式,利用待定系数法求二次函数解析式解答即可;
(2)联立两函数解析式消掉未知数y,得到关于x的一元二次方程,再根据方程有两个相等的实数根,△=0列式求解得到m的值,再求出x的值,然后求出y的值,从而得到公共点的坐标;
(3)根据轴对称性写出翻折部分的二次函数解析式,再根据直线与图象有3个公共点,①联立直线与翻折后的抛物线的解析式,消掉y得到关于x的一元二次方程,有两个相等的实数根,②直线经过抛物线与y轴的交点.
试题解析:(1)把(-1,0)和(0,-3)代入到y=x2+bx+c中,得,
解得,
所以y=x2-2x-3;
(2)由题意得:,
消掉y整理得,x2-6x-(3+m)=0,
∴△=(-6)2+4(3+m)=0,
解得m=-12,
此时,x1=x2=,
y=4×3-12=0,
∴m=-12,公共点为(3,0);
(3)原抛物线解析式为:y=x2-2x-3,
原抛物线沿y轴翻折后得到的新抛物线:y=x2+2x-3(x≥0),
由,
得x2-2x-3-n=0,
△=(-2)2+4(3+n)=0,
解得n=-4,
当直线y=4x+n经过点(0,-3)时,直线与图象G有3个公共点,
把(0,-3)代入到y=4x+n中,得n=-3,
综上所述,n=-3或-4.
考点:二次函数综合题.
科目:初中数学 来源: 题型:填空题
如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与x轴交于A,B两点,对称轴为直线,直线AD交抛物线于点D(2,3).
(1)求抛物线的解析式;
(2)已知点M为第三象限内抛物线上的一动点,当点M在什么位置时四边形AMCO的面积最大?并求出最大值;
(3)当四边形AMCO面积最大时,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.
(1)求抛物线的解析式;
(2)判断△MAB的形状,并说明理由;
(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知二次函数(a≠0)的图象经过点A,点B.
(1)求二次函数的表达式;
(2)若反比例函数(x>0)的图象与二次函数(a≠0)的图象在第一象限内交于点,落在两个相邻的正整数之间,请你直接写出这两个相邻的正整数;
(3)若反比例函数(x>0,k>0)的图象与二次函数(a≠0)的图象在第一象限内交于点,且,试求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com