精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-(2k-3)x+k2+1=0.
问:(1)当k为何值时,此方程有实数根;
(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.
分析:(1)由于方程有实数根,所以利用其判别式是非负数即可求解;
(2)由于方程的两实数根x1、x2,满足|x1|+|x2|=3,首先把等式两边同时平方,然后利用根与系数的关系即可求解.
解答:解:(1)若方程有实数根,
则△=(2k-3)2-4(k2+1)≥0,
∴k≤
5
12

∴当k≤
5
12
,时,此方程有实数根;
(2)∵此方程的两实数根x1、x2,满足|x1|+|x2|=3,
∴(|x1|+|x2|)2=9,
∴x12+x22+2|x1x2|=9,
∴(x1+x22-2x1x2+2|x1x2|=9,
而x1+x2=2k-3,x1x2=k2+1,
∴(2k-3)2-2(k2+1)+2(k2+1)=9,
∴2k-3=3或-3,
∴k=0或3,k=3不合题意,舍去;
∴k=0.
点评:此题分别考查了一元二次方程根的判别式和根与系数的关系,首先利用判别式求出k的取值范围,然后利用根与系数的关系得到关于k的方程,解方程即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案