【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
【答案】(1))△ABP的周长(7+)cm;(2)或时,△BCP为直角三角形;(3)t=2或6.
【解析】试题分析:(1)过P作PE⊥AB,设CP=2t,根据角平分线的性质和勾股定理进行解答即可;
(2)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上得t=3(s),若点P在AB上,则t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=,易得t=(s);当BP=BC=3时,△BCP为等腰三角形,则AP=AB-BP=2,易得t=6(s);
(3)分两种情况讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3+3=6;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6,分别求得t的值即可.
试题解析:(1)如图1,过P作PE⊥AB,
∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=5cm,BC=3cm,
∴CP=EP,
∴△ACP≌△AEP(HL),
∴AC=4cm=AE,BE=5-4=1,
设CP=x,则BP=3-x,PE=x,
∴Rt△BEP中,BE2+PE2=BP2,
即12+x2=(3-x)2
解得x=,
∴BP=3-=,
∴CA+AB+BP=4+5+=,
∴t=÷1=(s);
(2)如图2,当CP=CB时,△BCP为等腰三角形,
若点P在CA上,则1t=3,
解得t=3(s);
如图3,当BP=BC=3时,△BCP为等腰三角形,
∴AP=AB-BP=2,
∴t=(4+2)÷1=6(s);
如图4,若点P在AB上,CP=CB=3,作CD⊥AB于D,则根据面积法求得CD=,
在Rt△BCD中,由勾股定理得,BD=,
∴PB=2BD=
∴CA+AP=4+5-=5.4,
此时t=5.4÷1=5.4(s);
如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则BD=CD,
∴PD为△ABC的中位线,
∴AP=BP=AB=,
∴t=(4+)÷1=(s);
综上所述,t为3s或5.4s或6s或s时,△BCP为等腰三角形;
(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t+2t-3+3=6,
∴t=2(s);
如图7,当P点在AB上,Q在AC上,则AP=t-4,AQ=2t-8,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-4+2t-8=6,
∴t=6(s);
综上所述,当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.
(1)求证:AD=AN;
(2)若AB=,ON=1,求⊙O的半径.
(3)若且AE=4,求CM
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:(1)﹣3.56 既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0 是非正数;(4)﹣2018 既是负数,也是整数但不是有理数;(5)自然数是整数,其中正确的个数是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABC中, A=80, ABC与ACD的平分线交于点A1,得A1; A1BC与A1CD的平分线相交于点A2,得A2;……; A7BC与A7CD的平分线相交于点A8,得A8,则A8的度数为()
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C
(1)求一次函数与反比例函数的解析式;
(2)若点D与点C关于x轴对称,求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD、BE分别是△ABC的中线,AD、BE相交于点F.
(1)△ABC与△ABD的面积有怎样的数量关系?为什么?
(2)△BDF与△AEF的面积有怎样的数量关系?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com