精英家教网 > 初中数学 > 题目详情

【题目】如图,点B、E分别在直线ACDF上,若∠AGB=∠EHF,∠C=∠D,可以证明∠A=∠F.请完成下面证明过程中的各项“填空”.

证明:∵∠AGB=∠EHF(理由:

∠AGB= (对顶角相等)

∴∠EHF=∠DGF,∴DB∥EC(理由:

=∠DBA(两直线平行,同位角相等)

又∵∠C=∠D,∴∠DBA=∠D,

∴DF∥ (内错角相等,两直线平行)

∴∠A=∠F(理由: ).

【答案】已知;∠DGF;同位角相等,两直线平行;∠CAC∠A=∠F

【解析】

分析: 根据对顶角相等推知同位角∠EHF=∠DGF,从而证得两直线DB∥EC;然后由平行线的性质知内错角∠DBA=∠D,即可根据平行线的判定定理推知两直线DF∥AC;最后由平行线的性质(两直线平行,内错角相等)证得∠A=∠F.

详解: ∵∠AGB=∠EHF(已知),∠AGB=∠DGF(对顶角相等),

∴∠EHF=∠DGF

∴DB∥EC(同位角相等,两直线平行),

∴∠C=∠DBA两直线平行,同位角相等),

又∵∠C=∠D(已知),

∴∠DBA=∠D(等量代换),

∴DF∥AC(内错角相等,两直线平行),

∴∠A=∠F(两直线平行,内错角相等),

故答案是:已知;∠DGF;同位角相等,两直线平行;C;AC;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y= x,点A1(0,1),过点A1作y轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交y轴于点A3 , …,按此作法进行下去,则OA2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,直线y=mx与双曲线 相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;
(2)求直线AC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:

阅读时间

(小时)

2

2.5

3

3.5

4

学生人数(名)

1

2

8

6

3

则关于这20名学生阅读小时数的说法正确的是(  )

A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分AB两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负)。

A

-1.5

+1.5

-1

-2

-2

B

+1

+3

-3

+2

-3

(1)请你估算从55名男生中合格的人数大约是多少?

(2)通过相关的计算,说明哪个组的成绩比较均匀;

(3)至少举出三条理由说明A组成绩好于B组成绩,或找出一条理由来说明B组好于A组。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点B、D分别在∠MAN的两边AM、AN上,点C是射线AP上的一点,连接BC、DC,∠MAN=α,∠BCD=β,(0°<α<180°,0°<β<180°);BE平分∠MBC,DF平分∠NDC.

(1)如图1,若α=β=80°

①求∠MBC+∠NDC的度数;

②判断BE、DF的位置关系,并说明理由.

(2)如图2,当点C在射线AP上运动时,若直线BE、DF相交于点G,请用含有α、β的代数式表示∠BGD.(直接写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若ACAB=12,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于(
A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察如图所示的图形,回答下列问题:

(1) 图中的点被线段隔开分成四层,第一层有1个点,第二层有3个点,第三层有5个点,第四层有___________个点;

(2) 如果要你继续画下去,那么第五层有________点, 10层有_________点;

(3) 某一层上有77个点,你可知道这是第_________层;

(4) 第一层与第二层的和是__________前三层的和是_________前四层和为____________

你有没有发现什么规律?

根据你的推测,前一百层的和是___________.

查看答案和解析>>

同步练习册答案