精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.
(1)证明见解析;(2)菱形BMDN的面积为20,MN=2

试题分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;
(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣16x+64+16,求出即可.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中

∴△DMO≌△BNO(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BMDN是平行四边形,
∵MN⊥BD,
∴平行四边形BMDN是菱形;
(2)∵四边形BMDN是菱形,
∴MB=MD,
设MD长为x,则MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(8﹣x)2+42
解得:x=5,
∴菱形BMDN的面积为:MD×AB=5×4=20,
∵AB=4,AD=8,
∴BD=4
∵菱形BMDN的面积还可以表示为:BD×MN=2 MN
∴2 MN=20
∴MN=2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形中,的中点,于点
(1)求证:
(2)当,且平分时,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.
(2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____度时,图中阴影部分的面积和有最大值是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=SEBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、()、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是(   )
A.6B.C.2(1+D.1+

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE

(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.

查看答案和解析>>

同步练习册答案