精英家教网 > 初中数学 > 题目详情

【题目】如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=

【答案】180°
【解析】解:∵AB∥CD,
∴∠B+∠C=180°,
∴∠4+∠5=180°,
根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=360°﹣180°=180°.
所以答案是:180°.

【考点精析】本题主要考查了平行线的性质和多边形内角与外角的相关知识点,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:

(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为 人,扇形统计图中,希望参加活动D所占圆心角为 度,根据题中信息补全条形统计图.

(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+ca ≠0)的部分图象,其顶点坐标为(1n),且与x轴的一个交点在点(30)和(40)之间.则下列结论:

ab+c03a+b=0b2=4acn); ④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.

(1)AC=__cm,BC=__cm;

(2)当t为何值时,AP=PQ;

(3)当t为何值时,PQ=1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解方程x26x+20,原方程可变形为(  )

A.x3211B.x327C.x+327D.x322

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.

(1)若∠COE=20°,则∠BOD=   ;若∠COE=α,则∠BOD=   (用含α的代数式表示)

(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设一元二次方程x2﹣3x﹣1=0的两根为m,n,则mn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣10),点B在抛物线y=ax2+ax﹣2上.

1)点A的坐标为 ,点B的坐标为

2)抛物线的关系式为

3)设(2)中抛物线的顶点为D,求DBC的面积;

4)将三角板ABC绕顶点A逆时针方向旋转90°,到达AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径等于8cm,圆心O到直线l上一点的距离为4cm,则直线l与⊙O的公共点的个数为(  )

A.0B.1C.2D.12

查看答案和解析>>

同步练习册答案