分析 (1)根据等边三角形的性质得到∠PCD=∠PDC=60°,PC=CD=PD,根据外角的性质得到∠ACP=∠PDB=120°,然后根据相似三角形的判定即可得到结论;
(2)根据相似三角形的性质得到∠APC=∠PBD,根据外角的性质得到∠DPB+∠DBP=60°,于是得到结论.
解答 解:(1)当CD2=AC•DB时,△ACP∽△PDB,
∵△PCD是等边三角形,
∴∠PCD=∠PDC=60°,PC=CD=PD,
∴∠ACP=∠PDB=120°,
∵CD2=AC•DB,
∴$\frac{CD}{BD}$=$\frac{AC}{CD}$,即$\frac{PC}{BD}$=$\frac{AC}{PD}$,
∴△ACP∽△PDB;
(2)∵△ACP∽△PDB,
∴∠APC=∠PBD,
∵∠PDB=120°,
∴∠DPB+∠DBP=60°,
∴∠APC+∠BPD=60°,
∴∠APB=∠CPD+∠APC+∠BPD=120°.
点评 本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{9}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com