精英家教网 > 初中数学 > 题目详情
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

(1)如图①,若∠BAC=60°,则∠AFB=_____;如图②,若∠BAC=90°,则∠AFB=____;
(2)如图③,若∠BAC=α,则∠AFB=_____(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是____;在图⑤中,∠AFB与∠α的数量关系是____。请你任选其中一个结论证明。
解:⑴∠AFB=60°,∠AFB=45°;
⑵∠AFB=90°-α
⑶图4中:∠AFB=90°-α;
图5中:∠AFB=90°+α。
∠AFB=90°-α的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90-α,
∴∠AFB=90°-α;
∠AFB=90°+α的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠BDC=∠AEC,
∴∠AFB=∠BDC+∠CDE+∠DEF=∠CDE+∠CED=180°-∠DCE,
∵AB=AC,EC=ED,∠BAC=∠DCE=α,
∴∠DCE=90-α,
∴∠AFB=180°-(90-α)=90°+α。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=
 
;如图②,若∠BAC=90°,则∠AFB=
 

(2)如图③,若∠BAC=α,则∠AFB=
 
(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°-
12
α
;在图⑤中,∠AFB与∠α的数量关系是
 
.请你任选其中一个结论证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010-2011学年广东省考数学模拟试卷(三) 题型:解答题

(本题满分9分)填空或解答:点B、C、E在同一直线上,点A、D在直线CE

的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;

(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);

(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。

在图④中,∠AFB与∠α的数量关系是________________;

在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。

 

 

 

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(17):25.2 旋转变换(解析版) 题型:解答题

填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省宁德市福鼎一中九年级(上)期末数学试卷(解析版) 题型:解答题

填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.

查看答案和解析>>

科目:初中数学 来源:第24章《图形的相似》中考题集(17):24.3 相似三角形(解析版) 题型:解答题

填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.

查看答案和解析>>

同步练习册答案