精英家教网 > 初中数学 > 题目详情
如图,已知平面直角坐标系xOy中的点A(0,1),B(1,0),M、N为线段AB上两动点,过点M作x轴的平行线交y轴于点E,过点N作y轴的平行线交x轴于点F,交直线EM于点P(x,y),且S△MPN=S△AEM+S△NFB
(1)S△AOB
 
S矩形EOFP(填“>”、“=”、“<”),y与x的函数关系是
 
(不精英家教网要求写自变量的取值范围);
(2)当x=
2
2
时,求∠MON的度数;
(3)证明:∠MON的度数为定值.
分析:(1)由于△AOB与矩形EOFP有公共部分五边形OEMNF,而不同的部分是△AEM、△BFN和△PMN,若比较△AOB和矩形EOFP的面积大小,只需比较不同部分的面积大小即可,由已知得S△MPN=S△AEM+S△NFB,故两者的面积相等;y与x的函数关系:可根据P点坐标,求出矩形EPFO的面积,根据△AOB和矩形的面积相等,即可得到关于x、y的函数关系式;
(2)将x的值代入题(1)所得的函数关系式中,即可得到y的值,也就确定了P点的坐标;过O作OH⊥AB于H,在等腰Rt△OAB中,通过解直角三角形,可求得AB、OH的长,此时发现OH=OE,则可证得Rt△EMO≌Rt△HMO,由此可得∠1=∠2,同理可证得∠3=∠4,由于∠EOF=90°,则∠2+∠3=∠MON=45°,由此得解.
(3)方法同(2)类似,可用P点的横坐标,分别表示出EM、HN的长,通过证△EMO∽△HNO,得到∠1=∠3,同理可通过证△MHO∽△NFO,得到∠2=∠4,而∠EOF=90°,即可得到∠MON=45°.
解答:解:(1)∵S△MPN=S△AEM+S△NFB
∴S△AOB=S矩形EOFP;(1分)
∵S△AOB=
1
2
OA•OB=
1
2
×1×1=
1
2

∴S矩形EOFP=
1
2

∴y与x的函数关系是y=
1
2x
;(2分)

(2)当x=
2
2
时,y=
1
2x
=
2
2
,∴点P的坐标为(
2
2
2
2
)
.(3分)
可得四边形EOFP为正方形,过点O作OH⊥AB于H,精英家教网
∵在Rt△AOB中,OA=OB=1,
AB=
OA2+OB2
=
2
,H为AB的中点,
OH=
AB
2
=
2
2

在Rt△EMO和Rt△HMO中,
EO=HO=
2
2
OM=OM

∴Rt△EMO≌Rt△HMO.
∴∠1=∠2.(4分)
同理可证∠3=∠4.
∵∠1+∠2+∠3+∠4=90°,
∴∠2+∠3=45°.
即∠MON=45°.(5分)

(3)过点O作OH⊥AB于H,
依题意,可得OE=y=
1
2x
EM=1-y=1-
1
2x
OH=
2
2
HN=HB-NB=
2
2
-
2
(1-x)

EM
OE
=
HN
OH
,∠OEM=∠OHN=90°,
∴△EMO∽△HNO,
∴∠1=∠3.(6分)
同理可证∠2=∠4,
∵∠1+∠2+∠3+∠4=90°,
∴∠2+∠3=45°即∠MON=45°.(7分)
点评:此题考查了矩形、等腰直角三角形的性质,全等三角形、相似三角形的判定和性质;(2)(3)题中,通过辅助线来构造出与已知和所求相关的相似或全等三角形,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

同步练习册答案