精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.
(1)求证:∠DEF=∠CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.
(1)证明:过点E作EN⊥AB,
∵EF⊥BE,
∴∠DEF+∠CEB=90°.
∵∠CBE+∠CEB=90°,
∴∠DEF=∠CBE.

(2)EB=EF.
∵AE平分∠DAB,DE⊥AD,EN⊥AB,
∴DE=EN,
又∵EN=BC,
∴DE=CB.
∵∠C=∠D=90°,
∴△FDE≌△CEB.
∴EB=EF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.
(1)当△BEF是等边三角形时,求BF的长;
(2)求y与x的函数解析式,并写出它的定义域;
(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知ABCD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题,真命题是(  )
A.如图,如果OP平分∠AOB,那么,PA=PB
B.三角形的一个外角大于它的一个内角
C.如果两条直线没有公共点,那么这两条直线互相平行
D.有一组邻边相等的矩形是正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在边长为1的正方形ABCD中,以D为圆心、DA为半径画弧
AC
,E是AB上的一动点,过E作
AC
的切线交BC于点F,切点为G,连GC,过G作GC的垂线交AD与N,交CD的延长线于M.
(1)求证:AE=EG,GF=FC;
(2)设AE=x,用含x的代数式表示FC的长;
(3)在图中,除GF以外,是否还存在与FC相等的线段,是哪些?试证明或说明理由;
(4)当△GDN是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上,若MN⊥EF,MN=10cm,则EF=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为3,以CD为一边向CD两侧作等边三角形PCD和等边三角形QCD,那么PQ的长是(  )
A.
3
3
2
B.
2
3
3
C.3
3
D.6
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是一块锐角三角形余料,边BC=12cm,高AD=6cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,则正方形的边长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DEAC,DFAB.
(1)如果∠BAC=90°,那么四边形AEDF是______形;
(2)若四边形AEDF是正方形,则△ABC中需满足______.

查看答案和解析>>

同步练习册答案