精英家教网 > 初中数学 > 题目详情
(2010•贺州)如图,在梯形ABCD中,AD∥BC,AC、BD是梯形的对角线,且AC⊥BD,AD=3cm,BC=7cm,BD=6cm,则梯形ABCD的面积是
24
24
cm2
分析:过D作DE∥AC,交BC延长线于E,过D作DF⊥BE于F,首先证明四边形ADEC是平行四边形,根据平行四边形对边相等可得到CE=AD,进而可算出BE的长,再利用勾股定理算出DE的长,根据三角形的面积公式可以计算出梯形的高DF的长,最后利用梯形的面积公式可以计算出梯形ABCD面积.
解答:解:过D作DE∥AC,交BC延长线于E,过D作DF⊥BE于F,

则四边形ADEC是平行四边形,
从而可得:AD=CE=3cm,
故可得:BE=3+7=10cm,
∵AC⊥BD,
∴∠BDE=90°,
∵AC∥DE,
∴∠BDE=90°,
在Rt△BDE中,DE=
BE2-BD2
=
100-36
=8cm,
故S△BDE=
1
2
×DB×DE=
1
2
×6×8=24,
即可得
1
2
×DF×BE=24,
解得:DF=
24
5
cm,
从而可得梯形ABCD面积为:
1
2
(AD+BC)×DF=
1
2
×10×
24
5
=24cm2
故答案为:24.
点评:此题主要考查了梯形的面积计算,三角形的面积计算,以及平行四边形的判定与性质,关键是求出梯形的高DF的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•贺州)如图是由一些大小相同的小正方体搭成的一个几何体的三视图,则这个几何体的小正方体个数共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
72
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图,△NKM与△ABC是两块完全相同的45°的三角尺,将△NKM的直角顶点M放在△ABC的斜边AB的中点处,且MK经过点C,设AC=a.则两个三角尺的重叠部分△ACM的周长是
(1+
2
)a
(1+
2
)a

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图,在△ABC中,DE∥BC,EF∥AB.
(1)求证:△ADE∽△EFC;
(2)如果AB=6,AD=4,求
SADES△EFC
的值.

查看答案和解析>>

同步练习册答案