精英家教网 > 初中数学 > 题目详情

【题目】O为直线AB上的一点,OCOD,射线OE平分∠AOD.

(1)如图①,判断∠COE和∠BOD之间的数量关系,并说明理由;

(2)若将∠COD绕点O旋转至图②的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;

(3)若将∠COD绕点O旋转至图③的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.

【答案】1,见解析;(2)不发生变化,见解析;(3,见解析.

【解析】

1)根据垂直定义可得∠COD=90°,再根据角的和差关系可得

,进而得

2)由∠COD是直角,OE平分∠AOD可得出,从而得出∠COE和∠DOB的度数之间的关系;

3)根据(2)的解题思路,即可解答.

解:(1,理由如下:

2)不发生变化,证明如下:

3 ,证明如下:

,

,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点An,如果点An,与原点的距离不少于20,那么n的最小值是(

A. 11B. 12C. 13D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC在∠BOD内.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,则∠AOD的度数是   

②猜想∠BOC与∠AOD的数量关系,并说明理由;

2)如果∠AOC=BOD=x°AOD=y°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+mx轴交于点A-30),直线y=-x+2x轴、y轴分别交于BC两点,并与直线y=x+m相交于点D

1)点D的坐标为

2)求四边形AOCD的面积;

3)若点Px轴上一动点,当PD+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于一个数x,我们把[x]称作x的相伴数;若x0,则[x]x1;若x0,则[x]x+1.例:[0.5]=﹣0.5

1)求[][1]的值;

2)当a0b0时,有[a][b],试求代数式(ba33a+3b的值;

3)解方程:[x]+[x+2]1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=2x-2与抛物线交于点A(1,0)和点B,且mn

(1)当m=时,直接写出该抛物线顶点的坐标.

(2)求点B的坐标(用含m的代数式表示).

(3)设抛物线顶点为C,记△ABC的面积为S.

,求线段AB长度的取值范围;

②当时,求对应的抛物线的函数表达式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)

(2)(﹣72)×2

(3)

(4)

(5)3m2﹣mn﹣2m2+4mn

(6)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,对角线ACBD相交于点OEF过点O且与ABCD分别相交于点EF

1)如图①,求证:OE=OF

2)如图②,若EFDB,垂足为O,求证:四边形BEDF是菱形.

查看答案和解析>>

同步练习册答案