精英家教网 > 初中数学 > 题目详情
7.如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:AE=BF;
(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.

分析 (1)根据正方形的四条边都相等可得DA=AB,再根据同角的余角相等求出∠BAF=∠ADE,然后利用“角角边”证明△ABF和△DAE全等,再根据全等三角形对应边相等可得BF=AE,AF=DE,然后根据图形列式整理即可得证;
(2)根据题意作出图形,然后根据(1)的结论可得BF=AE,AF=DE,然后结合图形写出结论即可.

解答 (1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,$\left\{\begin{array}{l}{∠BAF=∠ADE}\\{∠AFB=∠DEA=90°}\\{DA=AB}\end{array}\right.$,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
(2)AF+BF=EF;
∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,$\left\{\begin{array}{l}{∠BAF=∠ADE}\\{∠AFB=∠DEA=90°}\\{DA=AB}\end{array}\right.$,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
∴AF+EF=BF.

点评 本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,已知O是?ABCD的对角线交点,AC=24cm,BD=34cm,AD=xcm,则x的取值范围是5<AD<29.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.
(1)求证:∠HEA=∠CGF;
(2)当AH=DG时,求证:菱形EFGH为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△A1B1C1(点A的对应点是A1,点B的对应点是B1,点C的对应点是C1).
(1)画出平移后的△A1B1C1
(2)求△ABC的面积;
(3)已知点P在x轴上,以A1、B1、P为顶点的三角形面积为6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.(-m+2n)2的运算结果是(  )
A.m2+4mn+4n2B.-m2-4mn+4n2C.m2-4mn+4n2D.m2-2mn+4n2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,AB∥CD,∠2=55°,则∠1的度数为(  )
A.125°B.135°C.145°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.一次函数y=-$\frac{4}{3}$x+1与y轴交点坐标是(0,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在平面直角坐标系中,点A的坐标为(0,2),点P在直线y=-x上运动,若点P的横坐标为1,则线段AP的长为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.小明和小亮晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮以大于小明的速度匀速跑.如图是两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,则下列说法中正确的个数是(  )
①小明比赛前的速度为100米/分;
②小亮比赛前的速度是120米/分;
③比赛时小亮的速度一定是220米/分;
④小明出发$\frac{5}{2}$或$\frac{31}{4}$分钟时,两人相距110米.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案