精英家教网 > 初中数学 > 题目详情

【题目】某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7109.69.89.9;乙的成绩的平均数为9.8,方差为0.032

1)甲的射击成绩的平均数和方差分别是多少?

2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?

【答案】19.80.02;(2)应选甲参加比赛.

【解析】

1)根据平均数和方差的定义列式计算可得;

2)根据方差的意义解答即可.

1×(9.7+10+9.6+9.8+9.9)=9.8(环),

×[(9.79.82+(109.82+(9.69.82+(9.89.82+(9.99.82]=0.02(环2);

2)∵甲、乙的平均成绩均为9.8环,而0.020.32

所以甲的成绩更加稳定一些,

则为了夺得金牌,应选甲参加比赛.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图6,在平面直角坐标系中,一次函数=+1的图象交轴于点D,与反比例函数=的图象在第一象限相交于点A.过点A分别作轴的垂线,垂足为点BC.

(1)点D的坐标为 ;

(2)当AB=4AC时,求值;

(3)当四边形OBAC是正方形时,直接写出四边形ABOD与△ACD面积的比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市水果批发部门欲将 A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为 200 / 时.其它主要参考数据如下:

运输工具

途中平均速度(千米/ 时)

运费(元/ 千米)

装卸费用(元)

火车

100

15

2000

汽车

80

20

900

运输过程中,火车因多次临时停车,全程在路上耽误 2 小时 45 分钟,火车的总支出费用与汽车的总支出费用相同,请问某市与本地的路程是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,抛物线x轴相交于点AB,与y轴相交于点C. 已知AC两点的坐标分别为A(-4,0), C(0,4).

(1)求抛物线的表达式;

(2)如果点PQ在抛物线上(P点在对称轴左边),且PQAOPQ=2AO,求PQ的坐标;

(3)动点M在直线y=x+4上,且ABCCOM相似,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图为放置在水平桌面上的台灯的平面示意图,可伸缩式灯臂AO长为40 cm,与水平面所形成的夹角∠OAM恒为75°(不受灯臂伸缩的影响).由光源0射出的光线沿灯罩形成光线OC,OB,与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°.

(1)求该台灯照亮桌面的宽度BC.(不考虑其他因素,结果精确到1 cm,参考数据:sin75°≈0.97,cos75°≈0.26, ≈1.73)

(2)若灯臂最多可伸长至60 cm,不调整灯罩的角度,能否让台灯照亮桌面85 cm的宽度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABCAC的中点,ADBCBO的延长线于点D,连接DCDB平分∠ADC,作DEBC,垂足为E

1)求证:四边形ABCD为菱形;

2)若BD8AC6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是几何学中的明珠,充满着魅力,千百年来,人们对它趋之若鹜,其中有著名的数学家,也有业余数学爱好者,向常春在1994年构造发现了一个新的证法:把两个全等的直角三角形如图1放置,其三边长分别为abc,显然∠DAB=∠B90°ACDE

1)请用abc分别表示出梯形ABCD、四边形AECDEBC的面积,再通过探究这三个图形面积之间的关系,证明:勾股定理a2+b2c2

2)如图2,铁路上AB两点(看作直线上的两点)相距40千米,CD为两个村庄(看作两个点),ADABBCAB,垂足分别为ABAD24千米,BC16千米,在AB上有一个供应站P,且PCPD,求出AP的距离;

3)借助(2)的思考过程与几何模型,直接写出代数式的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,OH分别为边ABAC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角在初中数学学习中无处不在在数学活动课上,李老师要求同学们用所学知识,利用无刻度的直尺和圆规判断已知∠AOB是不是直角.甲、乙两名同学各自给出不同的作法,来判断∠AOB是不是直角

甲:如图1,在OAOB上分别取点CD,以C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若OEOD,则∠AOB90°

乙:如图2,在OAOB上分别截取OM4个单位长度,ON3个单位长度,若MN5个单位长度,则∠AOB90°

甲、乙两位同学作法正确的是(  )

A. 甲正确,乙不正确B. 乙正确,甲不正确

C. 甲和乙都不正确D. 甲和乙都正确

查看答案和解析>>

同步练习册答案