(对顶角相等) (同旁内角互补,两直线平行) (两直线平行,同位角相等) (内错角相等,两直线平行) (两直线平行,内错角相等)
分析:由已知条件,对顶角相等推知同旁内角∠CGH+∠AHF=180°,则CE∥BF;然后利用该平行线的性质证得同位角∠C=∠BFD,所以结合已知条件,由等量代换证得同位角∠B=∠BFD,易证AB∥CD;最后由该平行线的性质证得结论.
解答:因为∠AGE+∠AHF=180°
∠AGE=∠CGH (对顶角相等),
所以∠CGH+∠AHF=180°
所以CE∥BF(同旁内角互补,两直线平行),
所以∠C=∠BFD (两直线平行,同位角相等),
因为∠B=∠C
所以∠B=∠BFD
所以AB∥CD (内错角相等,两直线平行),
所以∠A=∠D(两直线平行,内错角相等).
故答案分别是:(对顶角相等),(同旁内角互补,两直线平行),(两直线平行,同位角相等),(内错角相等,两直线平行),(两直线平行,内错角相等).
点评:本题考查了平行线的判定与性质.
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.