【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.
(2)根据线段垂直平分线的性质判断出AB=BF即可.
(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程kx2-4x+2=0有实数根.
(1)求k的取值范围;
(2)若ABC中,AB=AC=2,AB、BC的长是方程kx2-4x+2=0的两根,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的对称轴是,小亮通过观察得出了下面四条信息:
①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你认为其中正确的有________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上两点A、B所表示的数分别为、,点M从点A出发以每秒1个单位长度的速度沿数轴向右运动,点N从点B出发以每秒2个单位长度的速度沿数轴向左运动
(1)填空:点A和点B间的距离为 ;
(2)若点M和点N同时出发,求点M和点N相遇时的位置所表示的数;
(3)若点N比点M迟3秒钟出发,则点M出发几秒时,点M和点N刚好相距6个单位长度?此时数轴上是否存在一点C,使它到点B、点M和点N这三点的距离之和最小?若存在,请直接写出点C所表示的数和这个最小值;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛物线型蔬菜大棚,将其横截面放在如图所示的平面直角坐标系中,抛物线可近似用函数来表示.已知大棚在地面上的宽度OA为8米,距离O点2米处的棚高BC为米.
(1)求该抛物线的函数解析式;
(2)若借助横梁DE建一个门,且要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某地有一座圆弧形的拱桥,桥下水面宽为8米(即AB=8米),拱顶高出水面为2米(即CD=2米).
(1)求这座拱桥所在圆的半径.
(2)现有一艘宽6米,船舱顶部为正方形并高出水面1.5米的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线与轴、轴分别交于、两点,两动点、分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为( )
A. 、 B. 、 C. 、 D. 、
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,–)在抛物线上,求m的值.
(3)根据图象直接写出一次函数值大于二次函数值时x 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.
①某用户某月上网的时间为x小时,两种收费方式的费用分别为(元)、(元),写出、与x之间的函数关系式.
②在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com