精英家教网 > 初中数学 > 题目详情
14.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;
(3)如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.

分析 (1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;
(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC,根据图形易得x的值;
(3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,解方程可知三分线的长.

解答 解:(1)如图所示:


(2)如图所示:

①当AD=AE时,
∵2x+x=30°+30°,
∴x=20°;
②当AD=DE时,
∵30°+30°+2x+x=180°,
∴x=40°;

(3)如图所示,CD、AE就是所求的三分线.

设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,
此时△AEC∽△BDC,△ACD∽△ABC,
设AE=AD=x,BD=CD=y,
∵△AEC∽△BDC,
∴x:y=2:3,①
∵△ACD∽△ABC,
∴2:x=(x+y):2,②
由①和②解得$\left\{\begin{array}{l}{x=\frac{2}{5}\sqrt{10}}\\{y=\frac{3}{5}\sqrt{10}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{2}{5}\sqrt{10}}\\{y=-\frac{3}{5}\sqrt{10}}\end{array}\right.$(舍去),
∴AE=$\frac{2}{5}\sqrt{10}$,CD=$\frac{3}{5}\sqrt{10}$,
即三分线的长分别为$\frac{2}{5}\sqrt{10}$和$\frac{3}{5}\sqrt{10}$.

点评 此题是相似形的综合题,主要考查了三角形内角、外角间的关系及等腰三角形知识,掌握相似三角形的判定与性质,根据成比例的线段联立方程解决问题.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年福建省泉州市泉港区七年级3月教学质量检测数学试卷(解析版) 题型:判断题

解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知抛物线y=x2+mx+m的顶点在直线y=-x上,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.

(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了相同的方法进行解决:将△ABD沿AD所在的直线对折得到△ADF(如图2);请证明小敏的发现的是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知⊙O的半径OC=3cm,弦AB∥OC,且AB=OC,点P在OC上,则图中的阴影部分的面积是$\frac{3π}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题,1+2+3+…10=?
经过研究,这个问题的一般结论是1+2+3+…+n=$\frac{1}{2}$n(n+1),其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?
观察下面三个特殊的等式:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=$\frac{1}{3}$×3×4×5=20
读完这段材料,请你计算:
(1)1×2+2×3+…+100×101
(2)1×2+2×3+…+n(n+1)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.化简求值:(3x3y+2x2y2)÷xy+(x-y)2-(2x-1)(2x+1),其中x,y的值满足y=$\sqrt{x-3}$+$\sqrt{3-x}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.幻方的历史很悠久,传统幻方最早出现在下雨时代的“洛书”.“洛书”用今天的数学符号翻译出来,就是一个三阶幻方,如图1所示.
(1)①请你依据“洛书”把1,2,3,5,8填入如图2剩余的方格中使每横行、每竖列以及两条对角线上的数的和都是15;②把-4,-3,-2,-1,0,1,2,3,4填入如图2的方格中,使每横行、每竖列以及两条对角线上的数的和都相等;
(2)若把2x-4,2x-3,2x-2,2x-1,2x,2x+1,2x+2,2x+3,2x+4填入如图3的方格中,使每横行、每竖列以及两条对角线上的数的和都相等,则每行的和是6x(用含x的式子表示)
(3)根据上述填数经验,请把32,34,36,38,310,312,314,316,318填入如图4的方格中,使每横行、每竖列以及两条对角线上的数的积都相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,长方形的长和宽分别是8和3,建立适当的直角坐标系,并写出各个顶点的坐标.

查看答案和解析>>

同步练习册答案