精英家教网 > 初中数学 > 题目详情

将一个面积为7的正方形分割成如图1所示的四个形状相同、大小相等的直角三角形,再将这四个直角三角形拼成如图2所示的正方形ABCD,其中四边形EFGH也是正方形,求正方形ABCD的面积.

解:∵将一个面积为7的正方形分割成四个形状相同、大小相等的直角三角形,
∴a=,b=
∴c2=a2+b2=7+=
故正方形ABCD的面积为:
分析:根据将一个面积为7的正方形分割成四个形状相同、大小相等的直角三角形得出直角三角形斜边长度,进而得出正方形ABCD的面积.
点评:此题主要考查了勾股定理的应用以及正方形的性质,根据已知得出直角三角形斜边长度是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=-x-5交x轴于A,交y轴于B,点P(0,-1),D是线段AB上一动点,DC⊥y轴于点C,反比例函数y=
kx
的图象经过点D.
(1)若C为BP的中点,求k的值.
精英家教网
(2)DH⊥DC交OA于H,若D点的横坐标为x,四边形DHOC的面积为y,求y与x之间的函数关系式.
精英家教网
(3)将直线AB沿y轴正方向平移a个单位(a>5),交x轴、y轴于E、F点,G为y轴负半轴上一点,G(0,-a+5),点M、N以相同的速度分别从E、G两点同时出发,沿x轴、y轴向点O运动(不到达O点),同时静止,连接并延长FM交EN于K,连接OK、MN,当M、N两点在运动过程中以下两个结论:①∠EFM=∠MNK;②∠FMO=∠OKN,其中只有一个结论是正确的,请判断并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为
π+1
π+1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.
①求图(1)中,点A的坐标是多少?
②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=
107
S1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

同步练习册答案