精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.
分析:(1)要证BC与⊙O相切;只需证明OB⊥BC即可,根据角之间的互余关系易得证明;
(2)根据平行线的性质可得OC⊥BD,进而可得△OBE∽△BCE,可得出比例关系式,
OE
BE
=
BE
EC
代入数据即可得到答案.
解答:(1)证明:∵AB是直径,
∴∠D=90°,AD⊥BD.(1分)
∴∠A+∠ABD=90°.(2分)
又∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,
即∠ABC=90°.
∴OB⊥BC.(3分)
∵OB是半径,
∴BC与⊙O相切.(4分)

(2)解:∵OC∥AD,∠D=90°,
∴∠OEB=∠D=90°.
∴OC⊥BD.(5分)
∴BE=DE=
1
2
BD=3.(6分)
∵BE⊥OC,∠OBC=90°,
∴△OBE∽△BCE.(7分)
OE
BE
=
BE
EC
OE
3
=
3
4

OE=
9
4
.(9分)
∵OA=OB,DE=EB,
∴AD=2EO=
9
2
.(10分)
点评:本题考查切线的判定及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案