【题目】如图,在边长为 1 的正方形网格中,三角形 ABC 中任意一点 P(x0,y0)经平移后对应点为 P1(x0-4,y0+3),已知 A(0,2),B(4,0),C(-1,-1),将三角形 ABC 作同样的平移得到三角形 A1B1C1
(1)直接写出坐标:A1( , ),B1( , ),C1( , );
(2)三角形 A1B1C1 的面积为 ;
(3)已知点 P 在 y 轴上,且三角形 PAC 的面积等于三角形 ABC 面积的一半,求 P 点坐标.
【答案】(1)-4,5,0,3,-5,2;(2)7;(3)P(0,9)或P(0,-5).
【解析】
(1)由点P的对应点P1坐标知,需将三角形向左平移4个单位、向上平移3个单位,据此可得;
(2)直接利用割补法求出△A1B1C1的面积即可;
(3)△PAC以PA为底时,高为C点到y轴的距离,据此可得,再根据三角形 PAC 的面积等于三角形 ABC 面积的一半即可求出PA的长度,由此可求得P点坐标.
解:(1)0-4=-4,2+3=5,则A1 (-4,5),
4-4=0,0+3=3,则B1(0,3),
-1-4=-5,-1+3=2,则C1(-5,2);
故答案为:-4,5,0,3,-5,2;
(2)如下图,
,
故答案为:7;
(3),
∴,
又∵A(0,2),
∴P(0,9)或P(0,-5).
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,其中A(,),B(,),C(,),将这个正方形向左平移3个单位长度,再向上平移1个单位长度,得正方形.
(1)画出平移后的正方形;
(2)写出点D和点D′ 的坐标;
(3)写出线段与的位置和大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)化简求值:,其中x=﹣.
(2)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:
①用含x、y的代数式表示厨房的面积是_____m2;卧室的面积是______m2
②写出用含x、y的代数式表示这套房的总面积是多少平方米?
③当x=3,y=2时,求这套房的总面积是多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元.
(1)问A、B两种型号的汽车每辆进价分别为多少万元?
(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;
(3)若该汽车销售公司销售1辆A型汽车可获利800元,销售1辆B型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BC=6,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.
(1)求BH的长;
(2)若AB=12,试判断∠CBD与∠A的数量关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABCD的顶点的坐标分别为A(﹣6,9),B(0,9),C(3,0),D(﹣3,0),抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)过A、B两点,顶点为M.
(1)若抛物线过点C,求抛物线的解析式;
(2)若抛物线的顶点M落在△ACD的内部(包括边界),求a的取值范围;
(3)若a<0,连结CM交线段AB于点Q(Q不与点B重合),连接DM交线段AB于点P,设S1=S△ADP+S△CBQ , S2=S△MPQ , 试判断S1与S2的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的网格中的每个小正方形边长都是1,线段交点称作格点.任意连接这些格点,可得到一些线段.按要求作图:
(1)请画出△ABC的高AD;
(2)请连接格点,用一条线段将图中△ABC分成面积相等的两部分;
(3)直接写出△ABC的面积是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,CA=12 cm,BC=12cm;动点P从点C开始沿CA以2 cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BC以 2cm/s的速度向点C移动.如果P、Q、R分别从C、A、B同时移动,移动时间为t(0<t<6)s.
(1)∠CAB的度数是;
(2)以CB为直径的⊙O与AB交于点M,当t为何值时,PM与⊙O相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求S的最小值及相应的t值;
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com