精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC=8,∠BAC=120°,取一把含30°角的三角板,把30°角的顶点放在BC上一点D处,三角板绕点D旋转.
(1)当三角板的两边分别交边AB、AC于点E、F时,求证:△BDE∽△CFD.
(2)当三角板的两边分别交边AB、边CA的延长线于点E、F时,上述结论还成立吗?(直接回答,无需证明)
(3)当D点的位置是BC的中点时,连接E,F,△BDE与△DFE是否相似?并予以证明.
(4)若三角板的一边过点A(E与A重合),另一边与AC交于F,设BD=x,AF=y,求y关于x的函数解析式.
分析:(1)若要证明△BDE∽△CFD,只要找到两对相等的角即可,利用等腰三角形的性质和30°角的特点证明即可;
(2)△BDE与△CFD相似,证明思路和(1)相同;
(3)△BDE与△DFE相似,根据由一对角相等以及夹边的比值相等的两个三角形相似证明即可;
(4)由(1)可知△ABD∽△DFC,得到
AB
DC
=
BD
CF
,根据勾股定理求出底边BC的长,因为BD=x,所以CD=BC-x,AF=y,则CF=8-y,代入比例式整理即可得到y关于x的函数解析式.
解答:(1)证明:∵AB=AC=8,∠BAC=120°,
∴∠B=∠C=30°
∴∠BDE+∠BED=150°,
∵∠EDF=30°,
∴∠BDE+∠CDF=150°,
∴∠BED=∠CDF,
∴△BDE∽△CFD;

(2)解:△BDE与△CFD相似,理由如下:
∵AB=AC=8,∠BAC=120°,
∴∠B=∠C=30°,
∴∠BDE+∠BED=150°,
∵∠EDF=30°,
∴∠BDE+∠CDF=150°,
∴∠BED=∠CDF,
∴△BDE∽△CFD;

(3)△BDE与△DFE相似,理由如下:
∵△BDE∽△CFD,
BE
CD
=
DE
FD

∵BD=CD,
BE
BD
=
DE
FD

BE
DE
=
BD
FD

又∵∠B=∠FDC=30°,
∴△BDE∽△DFE;

(4)由(1)可知△ABD∽△DFC,
AB
DC
=
BD
CF

∵AB=AC=8,
∴BC=8
3

∵BD=x,AF=y,
∴CD=8
3
-x,CF=8-y,
8
8
3
-x
=
x
8-y

∴y=
1
8
x2-
3
x+8.
点评:本题考查了等腰三角形的性质、相似三角形的判定和性质,以及由相似三角形的性质:对应边的比值相等得到边长之间的函数关系,题目的综合性不小,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案