7£®Èçͼ¢Ù£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎOABCµÄ¶¥µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨2£¬2£©¡¢£¨4£¬0£©£¬µãD¡¢E·Ö±ðÊDZßOA¡¢ABµÄÖе㣬µãFÊÇÏ߶ÎDEµÄÖе㣬¹ýµãDµÄÅ×ÎïÏßy=x2+2mx+n£¨m¡¢nΪ³£Êý£©µÄ¶¥µãΪP£®
£¨1£©µãDµÄ×ø±êΪ£¨1£¬1£©£®Óú¬mµÄ´úÊýʽ±íʾnΪn=-2m£®
£¨2£©µ±Å×ÎïÏßy=x2+2mx+n¹ýµãBʱ£¬Èçͼ¢Ú£®
¢ÙÇó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£»
¢ÚÈôµãMÔÚ¸ÃÅ×ÎïÏßÉÏ£¬ÇÒλÓÚxÖáÏ·½£¬µãNÔÚÕý·½ÐÎOABCµÄ±ßÉÏ£¬µ±ÒÔDEºÍMNΪ¶Ô±ßµÄËıßÐÎÊÇƽÐÐËıßÐÎʱ£¬ÇóµãNµÄ×ø±ê£»
£¨3£©µ±µãPÔÚÕý·½ÐÎOABCµÄ±ßÉÏ»òÄÚ²¿£¬ÇÒÅ×ÎïÏßy=x2+2mx+nÓëÏ߶ÎEFûÓй«¹²µãʱ£¬Ö±½Óд³ömµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿ÉÇó³öµãD×ø±ê£¬°ÑµãD×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ù°ÑµãB×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É£®
¢Ú¹Û²ìͼÏó¿ÉÖªµãNÔÚBC±ßÉÏ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-4£¬ÉèM£¨m£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬ÔòN£¨m+2£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬°ÑµãN×ø±ê´úÈëÖ±ÏßBCµÄ½âÎöʽ¼´¿É£®
£¨3£©·Ö¶Ô³ÆÖáÔÚµãF×ó±ß»òµãEÓұߣ¬·Ö±ðÁгö²»µÈʽ×飬½â²»µÈʽ×é¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¡ßA£¨2£¬2£©£¬DO=DA£¬
¡àD£¨1£¬1£©£¬
°ÑD£¨1£¬1£©´úÈëy=x2+2mx+nµÃ1=1+2m+n£¬
¡àn=-2m£®
¹Ê´ð°¸Îª£¨1£¬1£©£¬n=-2m£®

£¨2£©¢Ù¡ßy=x2+2mx-2m¾­¹ýµãB£¨4£¬0£©£¬
¡à0=16+8m-2m£¬
¡àm=-$\frac{8}{3}$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-$\frac{16}{3}$x+$\frac{16}{3}$£®

¢Ú¹Û²ìͼÏó¿ÉÖªµãNÔÚBC±ßÉÏ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-4£¬
ÉèM£¨m£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬ÔòN£¨m+2£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬
°ÑµãN×ø±ê´úÈëÖ±ÏßBCµÄ½âÎöʽµÃµ½£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$=m+2-4£¬
ÕûÀíµÃµ½3m2-19m+22=0£¬
½âµÃm=$\frac{19-\sqrt{97}}{6}$»ò$\frac{19+\sqrt{97}}{6}$£¨ÉáÆú£©
¡àN£¨$\frac{31-\sqrt{97}}{6}$£¬$\frac{7-\sqrt{97}}{6}$£©£®

£¨3£©ÓÉÌâÒâ$\left\{\begin{array}{l}{-\frac{2m}{2}£¼\frac{3}{2}}\\{-m¡Ý2m+{m}^{2}}\\{-m¡Ý0}\end{array}\right.$»ò$\left\{\begin{array}{l}{-\frac{2m}{2}£¾2}\\{4+m¡Ý2m+{m}^{2}}\\{4+m¡Ý0}\end{array}\right.$£¬
½âµÃ-$\frac{3}{2}$¡Üm¡Ü0»ò$\frac{-1-\sqrt{17}}{2}$¡Üm£¼-2£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢´ý¶¨ÏµÊý·¨¡¢²»µÈʽ×éµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÓ¦Óôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÓÃת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬°ÑÎÊÌâת»¯Îª²»µÈʽ×é½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÒ»×é°´¹æÂÉÅÅÁеÄʽ×Ó£ºb£¬-2b2£¬4b3£¬-8b4£¬16b5¡­£¬ÔòµÚn£¨nΪÕýÕûÊý£©¸öʽ×ÓÊÇ£¨-2£©n-1bn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¹Û²ìÒ»ÁÐÊý£¬°´Ä³ÖÖ¹æÂÉÔÚºáÏßÉÏÌîÉÏÊʵ±µÄÊý£º$\frac{1}{6}$£¬$\frac{1}{12}$£¬$\frac{1}{20}$£¬$\frac{1}{30}$£¬¡­£¬µÚ99¸öÊýÊÇ$\frac{1}{10100}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½âÏÂÁз½³Ì£º
£¨1£©4x-3£¨20-x£©=6x-7£¨9-x£©
£¨2£©1-8£¨$\frac{1}{4}$+0.5x£©=3£¨1-2x£©
£¨3£©$\frac{2x+1}{3}$+1=$\frac{x+2}{2}$
£¨4£©2£¨x-0.7£©-3£¨1.4-2x£©=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¼ÆË㣺$\sqrt{9¡Á16}$=12£¬$\sqrt{8}$¡Â£¨$\frac{1}{2}$$\sqrt{2}$£©=4£¬£¨3$\sqrt{48}$-2$\sqrt{27}$£©¡Â$\sqrt{3}$=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÊýÖáÉÏA¡¢BÁ½µã·Ö±ð¶ÔÓ¦µÄÊýΪa¡¢b£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®a+b£¼0B£®ab£¼0C£®|b|=bD£®|a|£¼|b|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èô|a+3|+£¨b-2£©2=0£¬Ôòa+b=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º3x2y-[2x2y-£¨2xy2-3x2y£©]+3xy2£¬ÆäÖÐx=3£¬y=-$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬Ä³Ð¡ÇøÓÐÒ»¿é³¤Îª30m£¬¿íΪ24mµÄ¾ØÐοյأ¬¼Æ»®ÔÚÆäÖÐÐÞ½¨Á½¿éÏàͬµÄ¾ØÐÎÂ̵أ¬ËüÃǵÄÃæ»ýÖ®ºÍΪ480m2£¬Á½¿éÂ̵ØÖ®¼ä¼°ÖܱßÓпí¶ÈÏàµÈµÄÈËÐÐͨµÀ£¬ÔòÈËÐÐͨµÀµÄ¿í¶ÈΪ¶àÉÙÃ×£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸