分析 (1)根据已知条件可以判定:△ACD≌△BCE,可得AD=BE,再由角度关系求得∠AEB=60°;
(2)同(1)可证:△ACD≌△BCE,得到AD=BE,∠AEB=90°,再由CM⊥DE,可得CM=$\frac{1}{2}$DE,进而可求得线段CM、AE、BE之间的数量关系为:AE=BE+2CM.
解答 解:(1)∵△ACB与△DCE都为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∠CDE=∠CED=60°,
∴∠ADC=180°-∠CDE=60°,
∵∠ACD+∠DCB=∠ECB+∠DCB=60°
∴∠ACD=∠ECB,
∴在△ACD与△BCE中有
$\left\{\begin{array}{l}{CA=CB}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$
∴△ACD≌△BCE(SAS),
∴∠BEC=∠ADC=120°,AD=BE,
∴∠AEB=∠BEC-∠CED=60°,
故答案为:60°,AD=BE;
(2)①∵△ACB与△DCE都为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,
∴∠ADC=180°-∠CDE=135°,
∵∠ACD+∠DCB=∠ECB+∠DCB=90°
∴∠ACD=∠ECB,
∴在△ACD与△BCE中有
$\left\{\begin{array}{l}{CA=CB}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$
∴△ACD≌△BCE(SAS),
∴∠BEC=∠ADC=135°,AD=BE,
∴∠AEB=∠BEC-∠CED=90°,
故∠AEB的度数为90°;
②∵CM⊥DE,△CDE为等腰直角三角形,
∴DM=DE(三线合一)
∴CM=$\frac{1}{2}$DE,
∴AE=AD+DE=BE+2CM,
即:线段CM、AE、BE之间的数量关系为:AE=BE+2CM.
点评 此题考查旋转型全等,角度、线段之间的灵活转化,涉及了等腰三角形中的三线合一,直角三角形斜边上的中线等于斜边的一半等基础知识.
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | -3 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -3<x≤5 | B. | 3<x≤5 | C. | 3<x≤-5 | D. | -3<x<5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 128πcm2 | B. | 160πcm2 | C. | 176πcm2 | D. | 192πcm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | S32>S22>S12 | B. | S12=S22<S32 | C. | S12=S22>S32 | D. | S12=S22=S32 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com