如图,正方形ABCD中,连接BD.点E在边BC上,且CE=2BE.连接AE交BD于F;连接DE,取BD的中点O;取DE的中点G,连接OG.下列结论:
①BF=OF;②OGCD;③AB=5OG;④sinAFD=;⑤.
其中正确结论的个数是( )
A.5 B.4 C.3 D.2
B.
【解析】
试题分析: ∵CE=2BE,∴,∴.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AD∥BC,∴△BFE∽△DFA,∴,∵O是BD的中点,G是DE的中点,∴OB=OD,OG=BE,OG∥BC,∴BF=OF,①正确;
OG⊥CD,②正确;
OG=BC=AB,即AB=6OG,③错误,
连接OA,∴OA=OB=2OF,OA⊥BD,∴由勾股定理得;AF=OF,∴sin∠AFD=,④正确,
∵OG=BE,∴,设S△ODG=a,则S△BED=4a,∴S△BEF=a,S△AFB=3a,∴,⑤正确.
∴正确的共有4个.故选B.
考点:1.正方形的性质;2.垂线;3.相似三角形的判定与性质;4.锐角三角函数的定义.
科目:初中数学 来源: 题型:
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com