精英家教网 > 初中数学 > 题目详情

如图,抛物线的顶点坐标为,并且与y轴交于点C,与x轴交于两点A,B.

  (1)求抛物线的表达式;

  (2)设抛物线的对称轴与直线BC交于点D,连结AC、AD, 求△ACD的面积;

  (3)点E位直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存

  在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存

  在,请说明理由.

    

(1)由题意可设抛物线的表达式为.

∵点C在抛物线上,

,解得.

∴抛物线的表达式为,即

(2)令,即,解得

.

设BC的解析式为代入得,解得.

∴直线BC的解析式为

时,,∴.

所以

(1)  假设存在点E,使得以D、E、F为顶点的三角形与△BCO相似,

∵△BCO是等腰直角三角形,

则以D、E、F为顶点的三角形也必须是等腰直角三角形.

由EF∥OC得∠DEF=45°,故以D、E、F为顶点的等腰直角三角形

只能以点D、F为直角顶点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宝山区一模)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,将一块腰长为数学公式cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为________,点B的坐为________;
(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

科目:初中数学 来源:2013年上海市宝山区中考数学一模试卷(解析版) 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

同步练习册答案