精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,对角线ACBD相交于点O,点EF分别是OBOD的中点.

1)试说明四边形AECF是平行四边形.

2)若AC8AB6.若ACAB,求线段BD的长.

【答案】1)见解析;(24

【解析】

1)在平行四边形ABCD中,ACBD互相平分,OA=OCOB=OD,又EFOBOD的中点,所以OE=OF,所以ACEF互相平分,所以四边形AECF为平行四边形;
2)首先根据平行四边形的性质可得AO=COBO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.

(1)∵四边形ABCD是平行四边形,

OA=OCOB=OD

EFOBOD的中点,

OE=OF

ACEF互相平分,

∴四边形AECF为平行四边形;

(2)∵四边形ABCD是平行四边形,

AO=COBO=DO

AC=8

AO=4

AB=6ACAB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A是直线AM与⊙O的交点,点B在⊙O上,BDAM,垂足为DBD与⊙O交于点COC平分∠AOB,∠B60°

1)求证:AM是⊙O的切线;

2)若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件,出厂价为每件,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:

1)李明在开始创业的第一个月将销售单价定为,那么政府这个月为他承担的总差价为多少元?

2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?

3)物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.

学生能接受的早餐价格统计表

价格分组(单位:元)

频数

频率

0x2

60

0.15

2x4

180

c

4x6

92

0.23

6x8

a

0.12

x8

20

0.05

合计

b

1

根据以上信息解答下列问题:

1)统计表中,a  b  c 

2)扇形统计图中,m的值为  ,“甜”所对应的圆心角的度数是 

3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O所在圆的圆心,∠AOB90°,点P上运动(不与点AB重合),APOB延长线于点CCDOP于点D.若OB2BC2,则PD的长是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线的位置关系是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,QAP的中点,已知OQ长的最大值为,则k的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴交于AB两点(AB的左侧),与y轴交于点C(0,﹣3),对称轴为x1,点DC关于抛物线的对称轴对称.

1)求抛物线的解析式及点D的坐标;

2)点P是抛物线上的一点,当ABP的面积是8时,求出点P的坐标;

3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,ADM的面积最大?并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过AB两点的切线交于点C,测得∠C120°AB两点之间的距离为60m,则这段公路AB的长度是(

A.10πmB.20πmC.10πmD.60m

查看答案和解析>>

同步练习册答案