精英家教网 > 初中数学 > 题目详情
某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).
设年产量为x吨,费用为y(万元),销售单价为z(万元),则0≤x≤1000,
由图(1)知将点(1000,10000)代入到y=ax2可求得y=
1
100
x2
由图(2)求得z=-
1
100
x+30,
设毛利润为w(万元),
则w=xz-y=x(-
1
100
x+30)-
1
100
x2=-
1
50
(x-750)2+11250.
答:年产量是750吨时,所获毛利润最大,为11250万元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx的图象开口向下,与x轴的一个交点为B,顶点A在直线y=x上,O为坐标原点.
(1)证明:△AOB是等腰直角三角形;
(2)若△AOB的外接圆C的半径为1,求该二次函数的解析式;
(3)对题(2)中所求出的二次函数,在其图象上是否存在点P(点P与点A不重合),使得△POC是以PC为腰的等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象过(0,3),(3,0),且对称轴为直线x=1.
(1)求这个二次函数的图象的解析式;
(2)指出二次函数图象的顶点坐标;
(3)利用草图分析,当函数值y>0时,x的取值范围是多少.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线y=-
1
2
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
PQ
NP+BQ
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象如图所示,根据图中的数据,
(1)求二次函数的解析式;
(2)设此二次函数的顶点为P,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线经过点(-2,0)(1,0)(0,2)
(1)求二次函数的解析式;
(2)写出顶点坐标和对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球到达最大高度
32
3
米,如图1,以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米,试通过计算说明,球是否会进入球门?
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图2,在另一次地面进攻中,假如守门员站在离球门中央2米远的A处防守,进攻队员在离球门中央12米的B处,以120千米/小时的球速起脚射门,射向球门的立柱C,球门的宽度CD为7.2米,而守门员防守的最远水平距离S(米)与时间t(秒)之间的函数关系式为S=10t,问守门员能否挡住这次射门?
(4)在(3)的条件下,∠EAG区域为守门员的截球区域,试估计∠EAG的最大值(精确到0.1°).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为xm,短边为ym,工程总造价为w元.
(1)写出x的取值范围;
(2)写出y与x的函数关系式;
(3)写出w与x的函数关系式;
(4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:
3
≈1.732)

查看答案和解析>>

同步练习册答案