精英家教网 > 初中数学 > 题目详情
1.如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,试说明AD平分∠BAC.完成下面推理过程:
证明:∵AD⊥BC于D,EG⊥BC于G(已知)
∴∠ADC=∠EGC=90° (垂直的定义)
∴AD∥EG (同位角相等,两直线平行)
∴∠1=∠2 (两直线平行,内错角相等)
∠E=∠3 (两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3 (等量代换)
∴AD平分∠BAC (角平分线的定义).

分析 先根据垂直的定义得出∠ADC=∠EGC=90°,故可得出AD∥EG,再由平行线的性质可知∠1=∠2,∠E=∠3,故可得出∠2=∠3,据此可得出结论.

解答 证明:∵AD⊥BC于D,EG⊥BC于G(已知),
∴∠ADC=∠EGC=90° (垂直的定义).
∴AD∥EG (同位角相等,两直线平行),
∴∠1=∠2 (两直线平行,内错角相等),
∠E=∠3 (两直线平行,同位角相等).
又∵∠E=∠1(已知),
∴∠2=∠3 (等量代换),
∴AD平分∠BAC (角平分线的定义).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换; 角平分线的定义.

点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.张老师在黑板上画出了如图所示的图形,已知∠BAC=90°,AD⊥BC,垂足为D,则下列说法错误的是(  )
A.∠BAC与∠B是同旁内角B.AB与AC互相垂直
C.点A与直线BC的垂线段为线段ADD.点A到BC的距离是线段AD

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列说法中,正确的是(  )
A.两点之间的连线中,直线最短
B.若AP=BP,则P是线段AB的中点
C.若P是线段AB的中点,则AP=BP
D.两点之间的线段叫做这两点之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知?ABCD中,AB=2BC,AE⊥BC于E,F是CD的中点,∠FEC=54°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系中,A、B、C三点的坐标分别为:A(-5,5)、B(-3,0)、C(0,3).
(1)画出△ABC,它的面积为14.5;
(2)在△ABC中,点A经过平移后的对应点A′(1,6),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出B′、C′的坐标;
(3)点P(-3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,-3),则m=3,n=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图在矩形ABCD中,AB=nAD,点E、F分别在AB、AD上且不与顶点A、B、D重合,∠AEF=∠BCE,圆O过A、E、F三点.
(1)求证:圆O与CE相切于点E.
(2)如图1,若AF=2FD,且∠AEF=30°,求n的值.
(3)如图2,若EF=EC,且圆O与边CD相切,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$(k>0)交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)过原点O的另一条直线l交双曲线y=$\frac{k}{x}$(k>0)于P、Q两点(P点在第一象限的点A的上方),若由点A、B、P、Q为顶点组成的四边形面积为24,求点P的坐标;
(3)若P是双曲线y=$\frac{k}{x}$(k>0,x>0)上一点,分别过P向x轴,y轴作垂线,垂足分别为M,N,试问当P在何处时四边形PMON的周长最小,最小值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知2x=8y+2,9y=3x-9,则$\frac{1}{2}$x+2y=-$\frac{15}{2}$.

查看答案和解析>>

同步练习册答案