精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.

(1)求证:△ACE≌△DBF;

(2)求证:四边形BFCE是平行四边形.

【答案】证明见解析

【解析】试题分析:1)根据已知条件易证AC=BD,再由SAS即可判定ACE≌△DBF;(2)由ACE≌△DBF,根据全等三角形的性质可得CE=BFACE=DBF即可得CEBF,所以四边形BFCE是平行四边形.

试题解析:

1AB=CD

AB+BC=CD+BC,即AC=BD

又∵AE=DFA=D

∴△ACE≌△DBF.

2∵△ACE≌△DBF

CE=BFACE=DBF

CEBF

∴四边形BFCE是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】作图题

(1)如图:已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);

(2)如图:在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.

①在图中画出与关于直线成轴对称的△A′B′C′;

②线段CC′被直线_________;

③△ABC的面积为_________;

④在直线上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现用4个全等的直角三角形拼成如图所示弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:

(1)试说明a2+b2=c2

(2)如果大正方形的面积是6,小正方形的面积是2,求(a+b)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。

2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?

3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.

(1)求m的值;
(2)求A、B两点的坐标;
(3)当﹣3<x<1时,在抛物线上是否存在一点P,使得△PAB的面积是△ABC面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点A(a,0),B(0,b),且a、b满足=0, □ABCD的边ADy轴交于点E(0,2),且EAD中点,双曲线经过C、D两点.

(1)求k的值;

(2)点P在双曲线上,点Qy轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;

(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,MHT的中点,MNHT,交ABN,当TAF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:

(1)扇形A的圆心角的度数为 , 若此次冬令营一共有320名学生参加,则前往C地的学生约有人,并将条形统计图补充完整;
(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是半圆,连接AB,点O为AB的中点,点C,D在 上,连接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为

(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF= ∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?

(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.

查看答案和解析>>

同步练习册答案