精英家教网 > 初中数学 > 题目详情
(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知ABCD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.
(1)90,(2分)
∵QM=RN,
∴RM=SN,
∵∠PSN=∠SRM=90°,SP=SR,
∴△PSN≌△SRM,
∴∠SPN=∠RSM,
∵∠RSM+∠MSP=90°,
∴∠POM=90°

(2)构造的命题为:
已知等腰梯形ABCD中,ABCD,且BC=CD,∠ABC=60°,若点E、F分别在BC、CD上,且BE=CF,连接AF、DE相交于G,则∠AGE=120°.(4分)

证明:由已知,在等腰梯形ABCD中,ABCD,且BC=DA,∠ABC=60°,
∴∠ADC=∠C=120°,
∵BC=CD,BE=CF,
∴CE=DF;(5分)
在△DCE和△ADF中,
DC=AD
∠C=∠ADF=120°
CE=DF

∴△DCE≌△ADF(SAS),
∴∠CDE=∠DAF,(7分)
又∠DAF+∠AFD=180°-∠ADC=60°,
∴∠CDE+∠AFD=60°,
∴∠AGE=∠DGF=180°-(∠CDE+∠AFD)=180°-60°=120°.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是正方形,点E、F、G、H分别在AB、BC、CD、和DA上,连接EG和FH小明和小亮对这个图形进行探索,发现了很多有趣的东西,同时他俩又进一步猜想
小明说:如果EG和HF互相垂直,那么EG和HF一定相等;
小亮说:如果EG和HF相等,那么EG和HF一定互相垂直;
请你对小明和小亮的猜想进行判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a-b)等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,∠FOE=90°,顶点O与D点重合,交直线BC于E,交直线BA于F.
(1)求证:OF=OE;
(2)如图②,若O点在射线BD上运动,其它条件不变,上述结论是否仍然成立?画出图形,直接写出结论;
(3)如图③,O为正方形ABCD对角线的中点,∠FOE=90°且绕点O旋转,交BC、CD边于F、E点.(1)中的结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)当∠A=90°时,试判断四边形DFAE是何特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥EF,则下列结论正确的是(  )
A.∠BAE=30°B.△ABE≌△AEFC.CE2=AB•CFD.CF=
1
3
CD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=
2
EC.其中正确结论的序号是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.
(1)求证:∠DEF=∠CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.

查看答案和解析>>

同步练习册答案