分析 (1)结论:△BEF是等边三角形.由△EBD≌△FBC,推出BE=BF,由∠EBF=60°,推出△EBF是等边三角形;
(2))①当点E与A重合时,△BEF与△ADB重合,此时得到△BEF面积的最大值.②当BE⊥AD时,得到△BEF面积的最小值,求出最大值以及最小值即可解决问题;
(3)存在.如图,将△ABD沿AB翻折得到△ABD′,E的对应点为E′.易知:PA+PD+PB=AP′+PD+PP′=P′D′+PP′+PD,属于当D、P、P′、D′共线时,PA+PD+PB最小,最小值为线段DD′的长;
解答 解:(1)结论:△BEF是等边三角形.
理由:∵△ABD和△BCD都是等边三角形,
∴AB=BD=BC,∠EDB=∠C=60°,
∵∠EBF=∠DBC=60°,
∴∠EBD=∠FBC,
在△EBD和△FBC中,
$\left\{\begin{array}{l}{BD=BC}\\{∠EBD=∠FBC}\\{∠EBD=∠FBC}\end{array}\right.$,
∴△EBD≌△FBC,
∴BE=BF,
∵∠EBF=60°,
∴△EBF是等边三角形.
(2)①当点E与A重合时,△BEF与△ADB重合,此时得到△BEF面积的最大值为$\frac{\sqrt{3}}{4}$×22=$\sqrt{3}$,
②当BE⊥AD时,得到△BEF面积的最小值,因为此时BE=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,
所以△BEF面积的最小值为$\frac{\sqrt{3}}{4}$•($\sqrt{3}$)2=$\frac{3\sqrt{3}}{4}$,
∴$\frac{3\sqrt{3}}{4}$≤S≤$\sqrt{3}$.
(3)存在.如图,将△ABD沿AB翻折得到△ABD′,E的对应点为E′.
易知:PA+PD+PB=AP′+PD+PP′=P′D′+PP′+PD,
∴当D、P、P′、D′共线时,PA+PD+PB最小,最小值为线段DD′的长,最小值为2$\sqrt{3}$.
点评 本题考查三角形综合题、等边三角形的性质和判定、全等三角形的判定和性质、两点之间线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用对称,根据两种之间线段最短解决最值问题,属于中考压轴题.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1886×104 | B. | 0.1886×108 | C. | 1.886×107 | D. | 1.886×106 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com