精英家教网 > 初中数学 > 题目详情
如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动,连结PM.设动点P的运动时间是t秒.

(1)求线段AE的长;
(2)当△ADE与△PBM相似时,求t的值;
(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).
(1)AE=20;(2)t=13或t=;(3)①t=≤t≤20.

试题分析:(1)在直角三角形ADE中,已知AD=12,DE=16,根据勾股定理可求出AE的值;(2)分两种情况讨论:一、当∠DAE=∠PMB时,根据相似三角形的性质:相似三角形的对应边的比相等.即可求出t的值;二、当∠DAE=∠MPB时,由相似三角形的性质即可求出t的值.(3)①根据题意得出SEHP=SEMP,求出t的两个值,再根据t的取值范围即可求出t的值;②根据PE为对称轴作线段BC的轴对称图形B′C′,当点B′在线段AE上时,如图3所示,由勾股定理求得EB′=13,AB′=7,根据题意可证得△AB′N与△ADE相似,根据相似三角形对应边的比相等,可求出AN=5.6,NB′=4.2,则PN=t-5.6,PB′=21-t,再根据勾股定理可求出t的值为.当点C′在线段AE上时,如图4,则AC′=20-5=15,可证△AC′F与△ADE相似,可分别求出AF,C′F的值,在△PFB′中,利用勾股定理可求PF的值,从而求出AP的值,即求出t的值,所以有≤t≤20.
 
试题解析:(1)∵ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12,DE=16,∴AE=20;
(2)∵∠D=∠B=90°,∴△ADE与△PBM相似时,有两种可能;
当∠DAE=∠PMB时,有=,即=,解得:t=13;
当∠DAE=∠MPB时,有=,即=,解得t=
(3)①由题意得:SEHP=SEMP
××(20﹣t)=×12×(5+21﹣t)﹣×6×(21﹣t)﹣×6×5,
解得:t=
∵0<t<21,
∴t=
②根据题意得:≤t≤20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。

(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.

(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=x+2与两坐标轴交于A、B两点,将x轴沿AB翻折交双曲线y=(x<0)于点C,若BC⊥AB,则k=      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(     ).
A.AB∥EF
B.AB+DC=2EF
C.四边形AEFB和四边形ABCD相似.
D.EG=FH

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面给出了关于三角形相似的一些命题:①等边三角形都相似;②等腰三角形都相似;③直角三角形都相似;④等腰直角三角形都相似;⑤全等三角形都相似.其中正确的有(   )
A.5个 B.4个 C.3个 D.2个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AC是菱形ABCD的对角线,AE=EF=FC,则SBMN :S菱形ABCD的值是(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,电灯在横杆的正上方,在灯光下的影子为,点的距离是3m,则点的距离是(  )
A.mB.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为(  )
A.8mB.6.4mC.4.8mD.10m

查看答案和解析>>

同步练习册答案