【题目】如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.
(1)当∠CED=60°时,CD=________cm.
(2)当∠CED由60°变为120°时,点A向左移动了________cm(结果精确到0.1cm)(参考数据 ≈1.73).
【答案】 20 43.9
【解析】试题分析:(1)证明△CED是等边三角形,即可求解;
(2)分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可.
试题解析:(1)连接CD(图1),
∵CE=DE,∠CED=60°,
∴△CED是等边三角形,
∴CD=DE=20cm;
(2)根据题意得:AB=BC=CD,
当∠CED=60°时,AD=3CD=60cm,
当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD,
在直角△CHE中,sin∠CEH=,
∴CH=20sin60°=20×=10(cm),
∴CD=20cm,
∴AD=3×20=60≈103.9(cm),
∴103.9-60=43.9(cm),
即点A向左移动了43.9cm.
科目:初中数学 来源: 题型:
【题目】如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌,△AEB≌,且,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是( )
A.105°B.100°C.110°D.115°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工厂接到订单,需要边长为(a+3)和3的两种正方形卡纸.
(1)仓库只有边长为(a+3)的正方形卡纸,现决定将部分边长为(a+3)的正方形纸片,按图甲所示裁剪得边长为3的正方形.
①如图乙,求裁剪正方形后剩余部分的面积(用含a代数式来表示);
②剩余部分沿虚线又剪拼成一个如图丙所示长方形(不重叠无缝隙),则拼成的长方形的边长多少?(用含a代数式来表示);
(2)若将裁得正方形与原有正方形卡纸放入长方体盒子底部,按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),盒子底部中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2测得盒子底部长方形长比宽多3,则S2﹣S1的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,两个等腰直角三角板和有一条边在同一条直线上, , .将射线绕点逆时针旋转,交直线于点.将图1中的三角板沿直线向右平移,设、两点间的距离为.
解答问题:
(1)①当点与点重合时,如图2所示,可得的值为 ;
②在平移过程中, 的值为 (用含的代数式表示);
(2)将图2中的三角板绕点逆时针旋转,原题中的其他条件保持不变.当点落在线段上时,如图3所示,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转度, ≤,原题中的其他条件保持不变.如图4所示,请补全图形,计算的值(用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.
(1)用含的代数式表示的长度.
(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.
(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:
坡度 | 1:20 | 1:16 | 1:12 |
最大高度(米) | 1.50 | 1.00 | 0.75 |
(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;
(2)求斜坡底部点A与台阶底部点D的水平距离AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.
(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是 袋;(用含x的代数式表示)
(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张长方形纸板按图中虚线裁剪成块,其中有块是边长都为厘米的大正方形,块是边长都为厘米的小正方形,块是长为厘米,宽为厘米的一模一样的小长方形,且,设图中所有裁剪线(虚线部分)长之和为厘米.
(1)______(试用,的代数式表示);
(2)若每块小长方形的面积为平方厘米,四个正方形的面积和为平方厘米,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com