精英家教网 > 初中数学 > 题目详情
12.如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.
(1)若AB=1,则BC的长=1;
(2)求证:四边形ABCD是菱形.

分析 (1)只要证明△ABC是等腰三角形即可解决问题.
(2)首先证明四边形ABCD是平行四边形,再证明邻边相等即可.

解答 (1)解:∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠BAC=∠BCA,
∴BC=BA=1.
故答案为1.
(2)证明:∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠BAC=∠BCA,
∴BC=BA,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵AD∥BC,
∴∠ADB=∠BDC,
∴∠ABD=∠ADB,
∴AB=AD,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形.

点评 本题考查菱形的判定、平行四边形的判定和性质、角平分线的性质,等腰三角形的判定等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年浙江省八年级3月月考数学试卷(解析版) 题型:解答题

如图,实数在数轴上的位置,化简

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知x=$\sqrt{2}-2$,则$\frac{{x}^{2}-4x+4}{x}÷(\frac{2}{x}-1)$=4-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,点M在∠AOB的边OB上.
(1)过点M画线段MC⊥AO,垂足是C;
(2)过点C作∠ACF=∠O.(尺规作图,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标中,抛物线y=ax2-3ax-10a(a>0)分别交x轴于点A、B(点A在点B左侧),交y轴于点C,且OB=OC.

(1)求a的值;
(2)如图1,点P位抛物线上一动点,设点P的横坐标为t(t>0),连接AC、PA、PC,△PAC的面积为S,求S与t之间的函数关系式;
(3)如图2,在(2)的条件下,设对称轴l交x轴于点H,过P点作PD⊥l,垂足为D,在抛物线、对称轴上分别取点E、F,连接DE、EF,使PD=DE=EF,连接AE交对称轴于点G,直线y=kx-$\frac{8}{3}$k(k≠0)恰好经过点G,将直线y=kx-$\frac{8}{3}$k沿过点H的直线折叠得到对称直线m,直线m恰好经过点A,直线m与第四象限的抛物线交于另一点Q,若$\frac{PD}{FD}$=$\frac{5}{8}$,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年浙江省八年级3月月考数学试卷(解析版) 题型:单选题

方程①中,一元二次方程的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源:2016-2017学年浙江省八年级3月月考数学试卷(解析版) 题型:单选题

在二次根式中,字母x的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:抛物线y=x2+2mx+m,m为常数.
(1)若抛物线的对称轴为直线x=2.
①求m的值及抛物线的解析式;
②如图,抛物线与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,求过点A,B,C的外接圆的圆心E的坐标;
(2)若抛物线在-1≤x≤2上有最小值-4,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)猜想∠1、∠2、∠3的数量关系,并说明理由.
(2)如图2,将折一次改为折二次,若∠1=40°,∠2=60°,∠3=70°,则∠4=50°.
(3)如图3,若改为折多次,直接写出∠1,∠2,∠3,…,∠2n-1,∠2n之间的数量关系:∠1+∠3+∠5+…+∠2n-1=∠2+∠4+…+∠2n.

查看答案和解析>>

同步练习册答案