精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,已知AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.求证:AB=AC+CD.
分析:根据已知AC=BC,∠C=90,可得出DE=EB,再利用AD是△ABC的角平分线,DE⊥AB,可证明△ACD≌△AED,然后利用全等三角形的对应边相等和等量代换即可证明AB=AC+CD.
解答:证明:∵在△ABC中,AC=BC,∠C=90°,
∴∠ABC=45°,
又∵DE⊥AB,垂足为E,
∴∠B=∠EDB=45°,
∴DE=EB,
又∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,
∴DE=CD.
在Rt△ACD与Rt△AED中,
AD=AD
DE=CD

∴△ACD≌△AED,
∴AC=AE,CD=DE,
∴AB=AE+EB=AC+CD.
点评:此题考查学生对等腰直角三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识点的理解和掌握,证明此题的关键是证明△ACD≌△AED,此题难度不大,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案