精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠C,
∵在△ABD和△BCE中,
AB=BC
∠ABD=∠BCE
BD=CE

∴△ABD≌△BCE,
∴AD=BE;

(2)∵△ABD≌△BCE,
∴∠BAD=∠CBE,
∵∠BDF=180°-∠ADC,∠BEC=180°-∠BEA,
∠ADC=∠BAD+∠ABC,∠BEA=∠CBE+∠C,
∴∠ADC=∠BEA,
∴∠BDF=∠BEC,
∵△ABD≌△BCE
∴∠AFE=∠C=60°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

一个等腰三角形的两边长分别是6cm和9cm,则它的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为2,则其高AD为(  )
A.1B.
1
2
C.
3
2
D.
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,正三角形ABC中,P为AB的中点,Q为AC的中点,R为BC的中点,M为RC上任意一点,△PMS为正三角形.求证:RM=QS.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
(1)探究BM、MN、NC之间的关系,并说明理由;
(2)若△ABC的边长为2,求△AMN的周长;
(3)若点M、N分别是线段AB、CA延长线上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:
(1)AG=
1
2
AD;
(2)DF=EF;
(3)S△DGF=S△ADG+S△ECF

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC和△DCE都是边长为6的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为(  )
A.2
3
B.4C.4
3
D.6
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC为等边三角形,BE⊥AC于点E,AD⊥BD于点D,ADBC,则图中60°的角有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有______.(把你认为正确的序号都填上)

查看答案和解析>>

同步练习册答案